Welcome to Subscribe On Youtube

207. Course Schedule

Description

There are a total of numCourses courses you have to take, labeled from 0 to numCourses - 1. You are given an array prerequisites where prerequisites[i] = [ai, bi] indicates that you must take course bi first if you want to take course ai.

  • For example, the pair [0, 1], indicates that to take course 0 you have to first take course 1.

Return true if you can finish all courses. Otherwise, return false.

 

Example 1:

Input: numCourses = 2, prerequisites = [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take. 
To take course 1 you should have finished course 0. So it is possible.

Example 2:

Input: numCourses = 2, prerequisites = [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take. 
To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.

 

Constraints:

  • 1 <= numCourses <= 2000
  • 0 <= prerequisites.length <= 5000
  • prerequisites[i].length == 2
  • 0 <= ai, bi < numCourses
  • All the pairs prerequisites[i] are unique.

Solutions

Solution 1: Topological Sorting

For this problem, we can consider the courses as nodes in a graph, and prerequisites as edges in the graph. Thus, we can transform this problem into determining whether there is a cycle in the directed graph.

Specifically, we can use the idea of topological sorting. For each node with an in-degree of $0$, we reduce the in-degree of its out-degree nodes by $1$, until all nodes have been traversed.

If all nodes have been traversed, it means there is no cycle in the graph, and we can complete all courses; otherwise, we cannot complete all courses.

The time complexity is $O(n + m)$, and the space complexity is $O(n + m)$. Here, $n$ and $m$ are the number of courses and prerequisites respectively.

Kahn’s Algorithms:

https://en.wikipedia.org/wiki/Topological_sorting#Kahn’s_algorithm

BFS based,

  • start from with vertices with 0 incoming edge,insert them into list S,at the same time we remove all their outgoing edges,
  • after that find new vertices with 0 incoming edges and go on.

Tarjan’s Algorithms:

https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm DFS based,

  • loop through each node of the graph in an arbitrary order,
  • initiating a depth-first search that terminates when it hits any node that has already been visited
  • since the beginning of the topological sort or the node has no outgoing edges (i.e. a leaf node).
  • public class Course_Schedule {
    
        public class Solution_bfs {
            public boolean canFinish(int numCourses, int[][] prerequisites) { // Kahn's Algorithm
                if(numCourses <= 0) {
                    return false;
                }
    
                if(prerequisites == null || prerequisites.length == 0) {
                    return true;
                }
    
                int[] inDegree = new int[numCourses];
    
                // 1. setup indgree count
                for(int[] edge : prerequisites) {
                    inDegree[edge[0]]++;
                }
    
                Queue<Integer> queue = new LinkedList<>();
    
                // 2. start from node with no indgree, i.e. no prerquisites for this course
                for(int i = 0; i < inDegree.length; i++) {
                    if(inDegree[i] == 0) {
                        queue.offer(i);
                    }
                }
    
                List<Integer> result = new ArrayList<>();
    
                while(!queue.isEmpty()) {
                    int currentCourse = queue.poll();
                    result.add(currentCourse);
    
                    for(int[] edge : prerequisites) {
                        if(edge[1] == currentCourse) { // if a course requires current course
    
                            if(--inDegree[edge[0]] == 0) // -1, since current course is taken, and fulfill course edge[0]
                                queue.offer(edge[0]);
                        }
                    }
                }
    
                return result.size() == numCourses;
            }
        }
    
        public class Solution_dfs {
            public boolean canFinish(int numCourses, int[][] prerequisites) {
    
                if(prerequisites == null || prerequisites.length < 2) {
                    return true;
                }
    
                // 0 for not visited,1 for globally visited,-1 for visisted AND on current path
                int[] isVisited = new int[numCourses];
                List<List<Integer>> graph = new ArrayList<>();
    
                // 1. build graph
                for (int i = 0; i < numCourses; i++) {
                    graph.add(new ArrayList<>());
                }
                for (int[] each: prerequisites) {
                    graph.get(each[1]).add(each[0]);
                }
    
                // 2. dfs
                for (int i = 0; i < numCourses; i++) {
                    if (!dfs(i, isVisited, graph)) {
                        return false;
                    }
                }
    
                return true;
            }
    
            private boolean dfs(int courseIndex, int[] isVisited, List<List<Integer>> graph) {
                if (isVisited[courseIndex] == 1) {
                    return true;
                }
                if (isVisited[courseIndex] == -1) {
                    return false; // cycle found
                }
    
                isVisited[courseIndex] = -1;
                for (Integer next: graph.get(courseIndex)) {
                    if(!dfs(next, isVisited, graph)) {
                        return false;
                    }
                }
    
                isVisited[courseIndex] = 1;
                return true;
            }
        }
    
    }
    
    //////
    
    class Solution {
        public boolean canFinish(int numCourses, int[][] prerequisites) {
            List<Integer>[] g = new List[numCourses];
            Arrays.setAll(g, k -> new ArrayList<>());
            int[] indeg = new int[numCourses];
            for (var p : prerequisites) {
                int a = p[0], b = p[1];
                g[b].add(a);
                ++indeg[a];
            }
            Deque<Integer> q = new ArrayDeque<>();
            for (int i = 0; i < numCourses; ++i) {
                if (indeg[i] == 0) {
                    q.offer(i);
                }
            }
            int cnt = 0;
            while (!q.isEmpty()) {
                int i = q.poll();
                ++cnt;
                for (int j : g[i]) {
                    if (--indeg[j] == 0) {
                        q.offer(j);
                    }
                }
            }
            return cnt == numCourses;
        }
    }
    
  • class Solution {
    public:
        bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
            vector<vector<int>> g(numCourses);
            vector<int> indeg(numCourses);
            for (auto& p : prerequisites) {
                int a = p[0], b = p[1];
                g[b].push_back(a);
                ++indeg[a];
            }
            queue<int> q;
            for (int i = 0; i < numCourses; ++i) {
                if (indeg[i] == 0) {
                    q.push(i);
                }
            }
            int cnt = 0;
            while (!q.empty()) {
                int i = q.front();
                q.pop();
                ++cnt;
                for (int j : g[i]) {
                    if (--indeg[j] == 0) {
                        q.push(j);
                    }
                }
            }
            return cnt == numCourses;
        }
    };
    
  • '''
    >>> from collections import defaultdict
    
    >>> a = defaultdict(int)
    >>> a
    defaultdict(<type 'int'>, {})
    >>>
    >>> a['hehehe']
    0
    >>> a
    defaultdict(<type 'int'>, {'hehehe': 0})
    
    
    >>> a = defaultdict(list)
    >>> a
    defaultdict(<type 'list'>, {})
    >>> a['hehehe']
    []
    >>> a
    defaultdict(<type 'list'>, {'hehehe': []})
    '''
    class Solution:
        def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
            g = defaultdict(list)
            indeg = [0] * numCourses
            for a, b in prerequisites:
                g[b].append(a)
                indeg[a] += 1
            cnt = 0
            q = deque([i for i, v in enumerate(indeg) if v == 0])
            while q:
                i = q.popleft()
                cnt += 1
                for j in g[i]:
                    indeg[j] -= 1
                    if indeg[j] == 0:
                        q.append(j)
            return cnt == numCourses
    
    
  • func canFinish(numCourses int, prerequisites [][]int) bool {
    	g := make([][]int, numCourses)
    	indeg := make([]int, numCourses)
    	for _, p := range prerequisites {
    		a, b := p[0], p[1]
    		g[b] = append(g[b], a)
    		indeg[a]++
    	}
    	q := []int{}
    	for i, x := range indeg {
    		if x == 0 {
    			q = append(q, i)
    		}
    	}
    	cnt := 0
    	for len(q) > 0 {
    		i := q[0]
    		q = q[1:]
    		cnt++
    		for _, j := range g[i] {
    			indeg[j]--
    			if indeg[j] == 0 {
    				q = append(q, j)
    			}
    		}
    	}
    	return cnt == numCourses
    }
    
  • function canFinish(numCourses: number, prerequisites: number[][]): boolean {
        const g: number[][] = new Array(numCourses).fill(0).map(() => []);
        const indeg: number[] = new Array(numCourses).fill(0);
        for (const [a, b] of prerequisites) {
            g[b].push(a);
            indeg[a]++;
        }
        const q: number[] = [];
        for (let i = 0; i < numCourses; ++i) {
            if (indeg[i] == 0) {
                q.push(i);
            }
        }
        let cnt = 0;
        while (q.length) {
            const i = q.shift()!;
            cnt++;
            for (const j of g[i]) {
                if (--indeg[j] == 0) {
                    q.push(j);
                }
            }
        }
        return cnt == numCourses;
    }
    
    
  • public class Solution {
        public bool CanFinish(int numCourses, int[][] prerequisites) {
            var g = new List<int>[numCourses];
            for (int i = 0; i < numCourses; ++i) {
                g[i] = new List<int>();
            }
            var indeg = new int[numCourses];
            foreach (var p in prerequisites) {
                int a = p[0], b = p[1];
                g[b].Add(a);
                ++indeg[a];
            }
            var q = new Queue<int>();
            for (int i = 0; i < numCourses; ++i) {
                if (indeg[i] == 0) {
                    q.Enqueue(i);
                }
            }
            var cnt = 0;
            while (q.Count > 0) {
                int i = q.Dequeue();
                ++cnt;
                foreach (int j in g[i]) {
                    if (--indeg[j] == 0) {
                        q.Enqueue(j);
                    }
                }
            }
            return cnt == numCourses;
        }
    }
    
  • use std::collections::VecDeque;
    
    impl Solution {
        #[allow(dead_code)]
        pub fn can_finish(num_course: i32, prerequisites: Vec<Vec<i32>>) -> bool {
            let num_course = num_course as usize;
            // The graph representation
            let mut graph: Vec<Vec<i32>> = vec![vec![]; num_course];
            // Record the in degree for each node
            let mut in_degree_vec: Vec<i32> = vec![0; num_course];
            let mut q: VecDeque<usize> = VecDeque::new();
            let mut count = 0;
    
            // Initialize the graph & in degree vector
            for p in &prerequisites {
                let (from, to) = (p[0], p[1]);
                graph[from as usize].push(to);
                in_degree_vec[to as usize] += 1;
            }
    
            // Enqueue the first batch of nodes with in degree 0
            for i in 0..num_course {
                if in_degree_vec[i] == 0 {
                    q.push_back(i);
                }
            }
    
            // Begin the traverse & update through the graph
            while !q.is_empty() {
                // Get the current node index
                let index = q.front().unwrap().clone();
                // This course can be finished
                count += 1;
                q.pop_front();
                for i in &graph[index] {
                    // Update the in degree for the current node
                    in_degree_vec[*i as usize] -= 1;
                    // See if can be enqueued
                    if in_degree_vec[*i as usize] == 0 {
                        q.push_back(*i as usize);
                    }
                }
            }
    
            count == num_course
        }
    }
    
    

All Problems

All Solutions