Welcome to Subscribe On Youtube
189. Rotate Array
Description
Given an integer array nums
, rotate the array to the right by k
steps, where k
is non-negative.
Example 1:
Input: nums = [1,2,3,4,5,6,7], k = 3 Output: [5,6,7,1,2,3,4] Explanation: rotate 1 steps to the right: [7,1,2,3,4,5,6] rotate 2 steps to the right: [6,7,1,2,3,4,5] rotate 3 steps to the right: [5,6,7,1,2,3,4]
Example 2:
Input: nums = [-1,-100,3,99], k = 2 Output: [3,99,-1,-100] Explanation: rotate 1 steps to the right: [99,-1,-100,3] rotate 2 steps to the right: [3,99,-1,-100]
Constraints:
1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
0 <= k <= 105
Follow up:
- Try to come up with as many solutions as you can. There are at least three different ways to solve this problem.
- Could you do it in-place with
O(1)
extra space?
Solutions
Solution 1: Reverse three times
We can assume the length of the array is $n$ and calculate the actual number of steps needed by taking the module of $k$ and $n$, which is $k \bmod n$.
Next, let us reverse three times to get the final result:
- Reverse the entire array.
- Reverse the first $k$ elements.
- Reverse the last $n - k$ elements.
For example, for the array $[1, 2, 3, 4, 5, 6, 7]$, $k = 3$, $n = 7$, $k \bmod n = 3$.
- In the first reverse, reverse the entire array. We get $[7, 6, 5, 4, 3, 2, 1]$.
- In the second reverse, reverse the first $k$ elements. We get $[5, 6, 7, 4, 3, 2, 1]$.
- In the third reverse, reverse the last $n - k$ elements. We get $[5, 6, 7, 1, 2, 3, 4]$, which is the final result.
The time complexity is $O(n)$, where $n$ is the length of the array. The space complexity is $O(1)$.
-
class Solution { private int[] nums; public void rotate(int[] nums, int k) { this.nums = nums; int n = nums.length; k %= n; reverse(0, n - 1); reverse(0, k - 1); reverse(k, n - 1); } private void reverse(int i, int j) { for (; i < j; ++i, --j) { int t = nums[i]; nums[i] = nums[j]; nums[j] = t; } } }
-
class Solution { public: void rotate(vector<int>& nums, int k) { int n = nums.size(); k %= n; reverse(nums.begin(), nums.end()); reverse(nums.begin(), nums.begin() + k); reverse(nums.begin() + k, nums.end()); } };
-
class Solution: def rotate(self, nums: List[int], k: int) -> None: k %= len(nums) nums[:] = nums[-k:] + nums[:-k] ############ class Solution: def rotate(self, nums: List[int], k: int) -> None: """ Do not return anything, modify nums in-place instead. """ n = len(nums) k %= n if n < 2 or k == 0: return nums[:] = nums[::-1] nums[:k] = nums[:k][::-1] nums[k:] = nums[k:][::-1] ############ class Solution(object): def rotate(self, nums, k): """ :type nums: List[int] :type k: int :rtype: void Do not return anything, modify nums in-place instead. """ if len(nums) == 0 or k == 0: return def reverse(start, end, s): while start < end: s[start], s[end] = s[end], s[start] start += 1 end -= 1 n = len(nums) - 1 k = k % len(nums) reverse(0, n - k, nums) reverse(n - k + 1, n, nums) reverse(0, n, nums)
-
func rotate(nums []int, k int) { n := len(nums) k %= n reverse := func(i, j int) { for ; i < j; i, j = i+1, j-1 { nums[i], nums[j] = nums[j], nums[i] } } reverse(0, n-1) reverse(0, k-1) reverse(k, n-1) }
-
/** Do not return anything, modify nums in-place instead. */ function rotate(nums: number[], k: number): void { const n: number = nums.length; k %= n; const reverse = (i: number, j: number): void => { for (; i < j; ++i, --j) { const t: number = nums[i]; nums[i] = nums[j]; nums[j] = t; } }; reverse(0, n - 1); reverse(0, k - 1); reverse(k, n - 1); }
-
/** * @param {number[]} nums * @param {number} k * @return {void} Do not return anything, modify nums in-place instead. */ var rotate = function (nums, k) { const n = nums.length; k %= n; const reverse = (i, j) => { for (; i < j; ++i, --j) { [nums[i], nums[j]] = [nums[j], nums[i]]; } }; reverse(0, n - 1); reverse(0, k - 1); reverse(k, n - 1); };
-
public class Solution { private int[] nums; public void Rotate(int[] nums, int k) { this.nums = nums; int n = nums.Length; k %= n; reverse(0, n - 1); reverse(0, k - 1); reverse(k, n - 1); } private void reverse(int i, int j) { for (; i < j; ++i, --j) { int t = nums[i]; nums[i] = nums[j]; nums[j] = t; } } }
-
impl Solution { pub fn rotate(nums: &mut Vec<i32>, k: i32) { let n = nums.len(); let k = (k as usize) % n; nums.reverse(); nums[..k].reverse(); nums[k..].reverse(); } }