Welcome to Subscribe On Youtube

129. Sum Root to Leaf Numbers

Description

You are given the root of a binary tree containing digits from 0 to 9 only.

Each root-to-leaf path in the tree represents a number.

  • For example, the root-to-leaf path 1 -> 2 -> 3 represents the number 123.

Return the total sum of all root-to-leaf numbers. Test cases are generated so that the answer will fit in a 32-bit integer.

A leaf node is a node with no children.

 

Example 1:

Input: root = [1,2,3]
Output: 25
Explanation:
The root-to-leaf path 1->2 represents the number 12.
The root-to-leaf path 1->3 represents the number 13.
Therefore, sum = 12 + 13 = 25.

Example 2:

Input: root = [4,9,0,5,1]
Output: 1026
Explanation:
The root-to-leaf path 4->9->5 represents the number 495.
The root-to-leaf path 4->9->1 represents the number 491.
The root-to-leaf path 4->0 represents the number 40.
Therefore, sum = 495 + 491 + 40 = 1026.

 

Constraints:

  • The number of nodes in the tree is in the range [1, 1000].
  • 0 <= Node.val <= 9
  • The depth of the tree will not exceed 10.

Solutions

Solution 1: DFS

We can design a function $dfs(root, s)$, which represents the sum of all path numbers from the current node $root$ to the leaf nodes, given that the current path number is $s$. The answer is $dfs(root, 0)$.

The calculation of the function $dfs(root, s)$ is as follows:

  • If the current node $root$ is null, return $0$.
  • Otherwise, add the value of the current node to $s$, i.e., $s = s \times 10 + root.val$.
  • If the current node is a leaf node, return $s$.
  • Otherwise, return $dfs(root.left, s) + dfs(root.right, s)$.

The time complexity is $O(n)$, and the space complexity is $O(\log n)$. Here, $n$ is the number of nodes in the binary tree.

  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public int sumNumbers(TreeNode root) {
            return dfs(root, 0);
        }
    
        private int dfs(TreeNode root, int s) {
            if (root == null) {
                return 0;
            }
            s = s * 10 + root.val;
            if (root.left == null && root.right == null) {
                return s;
            }
            return dfs(root.left, s) + dfs(root.right, s);
        }
    }
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        int sumNumbers(TreeNode* root) {
            function<int(TreeNode*, int)> dfs = [&](TreeNode* root, int s) -> int {
                if (!root) return 0;
                s = s * 10 + root->val;
                if (!root->left && !root->right) return s;
                return dfs(root->left, s) + dfs(root->right, s);
            };
            return dfs(root, 0);
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def sumNumbers(self, root: Optional[TreeNode]) -> int:
            def dfs(root, s):
                if root is None:
                    return 0
                s = s * 10 + root.val
                if root.left is None and root.right is None:
                    return s
                return dfs(root.left, s) + dfs(root.right, s)
    
            return dfs(root, 0)
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func sumNumbers(root *TreeNode) int {
    	var dfs func(*TreeNode, int) int
    	dfs = func(root *TreeNode, s int) int {
    		if root == nil {
    			return 0
    		}
    		s = s*10 + root.Val
    		if root.Left == nil && root.Right == nil {
    			return s
    		}
    		return dfs(root.Left, s) + dfs(root.Right, s)
    	}
    	return dfs(root, 0)
    }
    
  • /**
     * Definition for a binary tree node.
     * class TreeNode {
     *     val: number
     *     left: TreeNode | null
     *     right: TreeNode | null
     *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
     *         this.val = (val===undefined ? 0 : val)
     *         this.left = (left===undefined ? null : left)
     *         this.right = (right===undefined ? null : right)
     *     }
     * }
     */
    
    function sumNumbers(root: TreeNode | null): number {
        function dfs(root: TreeNode | null, s: number): number {
            if (!root) return 0;
            s = s * 10 + root.val;
            if (!root.left && !root.right) return s;
            return dfs(root.left, s) + dfs(root.right, s);
        }
        return dfs(root, 0);
    }
    
    
  • /**
     * Definition for a binary tree node.
     * function TreeNode(val, left, right) {
     *     this.val = (val===undefined ? 0 : val)
     *     this.left = (left===undefined ? null : left)
     *     this.right = (right===undefined ? null : right)
     * }
     */
    /**
     * @param {TreeNode} root
     * @return {number}
     */
    var sumNumbers = function (root) {
        function dfs(root, s) {
            if (!root) return 0;
            s = s * 10 + root.val;
            if (!root.left && !root.right) return s;
            return dfs(root.left, s) + dfs(root.right, s);
        }
        return dfs(root, 0);
    };
    
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    use std::rc::Rc;
    use std::cell::RefCell;
    impl Solution {
        fn dfs(node: &Option<Rc<RefCell<TreeNode>>>, mut num: i32) -> i32 {
            if node.is_none() {
                return 0;
            }
            let node = node.as_ref().unwrap().borrow();
            num = num * 10 + node.val;
            if node.left.is_none() && node.right.is_none() {
                return num;
            }
            Self::dfs(&node.left, num) + Self::dfs(&node.right, num)
        }
    
        pub fn sum_numbers(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
            Self::dfs(&root, 0)
        }
    }
    
    

All Problems

All Solutions