Welcome to Subscribe On Youtube

124. Binary Tree Maximum Path Sum

Description

A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.

The path sum of a path is the sum of the node's values in the path.

Given the root of a binary tree, return the maximum path sum of any non-empty path.

 

Example 1:

Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.

Example 2:

Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.

 

Constraints:

  • The number of nodes in the tree is in the range [1, 3 * 104].
  • -1000 <= Node.val <= 1000

Solutions

Solution 1: Recursion

When thinking about the classic routine of recursion problems in binary trees, we consider:

  1. Termination condition (when to terminate recursion)
  2. Recursively process the left and right subtrees
  3. Merge the calculation results of the left and right subtrees

For this problem, we design a function $dfs(root)$, which returns the maximum path sum of the binary tree with $root$ as the root node.

The execution logic of the function $dfs(root)$ is as follows:

If $root$ does not exist, then $dfs(root)$ returns $0$;

Otherwise, we recursively calculate the maximum path sum of the left and right subtrees of $root$, denoted as $left$ and $right$. If $left$ is less than $0$, then we set it to $0$, similarly, if $right$ is less than $0$, then we set it to $0$.

Then, we update the answer with $root.val + left + right$. Finally, the function returns $root.val + \max(left, right)$.

In the main function, we call $dfs(root)$ to get the maximum path sum of each node, and the maximum value among them is the answer.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree.

  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        private int ans = -1001;
    
        public int maxPathSum(TreeNode root) {
            dfs(root);
            return ans;
        }
    
        private int dfs(TreeNode root) {
            if (root == null) {
                return 0;
            }
            int left = Math.max(0, dfs(root.left));
            int right = Math.max(0, dfs(root.right));
            ans = Math.max(ans, root.val + left + right);
            return root.val + Math.max(left, right);
        }
    }
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        int maxPathSum(TreeNode* root) {
            int ans = -1001;
            function<int(TreeNode*)> dfs = [&](TreeNode* root) {
                if (!root) {
                    return 0;
                }
                int left = max(0, dfs(root->left));
                int right = max(0, dfs(root->right));
                ans = max(ans, left + right + root->val);
                return root->val + max(left, right);
            };
            dfs(root);
            return ans;
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def maxPathSum(self, root: Optional[TreeNode]) -> int:
            def dfs(root: Optional[TreeNode]) -> int:
                if root is None:
                    return 0
                left = max(0, dfs(root.left))
                right = max(0, dfs(root.right))
                nonlocal ans
                ans = max(ans, root.val + left + right)
                return root.val + max(left, right)
    
            ans = -inf
            dfs(root)
            return ans
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func maxPathSum(root *TreeNode) int {
    	ans := -1001
    	var dfs func(*TreeNode) int
    	dfs = func(root *TreeNode) int {
    		if root == nil {
    			return 0
    		}
    		left := max(0, dfs(root.Left))
    		right := max(0, dfs(root.Right))
    		ans = max(ans, left+right+root.Val)
    		return max(left, right) + root.Val
    	}
    	dfs(root)
    	return ans
    }
    
  • /**
     * Definition for a binary tree node.
     * class TreeNode {
     *     val: number
     *     left: TreeNode | null
     *     right: TreeNode | null
     *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
     *         this.val = (val===undefined ? 0 : val)
     *         this.left = (left===undefined ? null : left)
     *         this.right = (right===undefined ? null : right)
     *     }
     * }
     */
    
    function maxPathSum(root: TreeNode | null): number {
        let ans = -1001;
        const dfs = (root: TreeNode | null): number => {
            if (!root) {
                return 0;
            }
            const left = Math.max(0, dfs(root.left));
            const right = Math.max(0, dfs(root.right));
            ans = Math.max(ans, left + right + root.val);
            return Math.max(left, right) + root.val;
        };
        dfs(root);
        return ans;
    }
    
    
  • /**
     * Definition for a binary tree node.
     * function TreeNode(val, left, right) {
     *     this.val = (val===undefined ? 0 : val)
     *     this.left = (left===undefined ? null : left)
     *     this.right = (right===undefined ? null : right)
     * }
     */
    /**
     * @param {TreeNode} root
     * @return {number}
     */
    var maxPathSum = function (root) {
        let ans = -1001;
        const dfs = root => {
            if (!root) {
                return 0;
            }
            const left = Math.max(0, dfs(root.left));
            const right = Math.max(0, dfs(root.right));
            ans = Math.max(ans, left + right + root.val);
            return Math.max(left, right) + root.val;
        };
        dfs(root);
        return ans;
    };
    
    
  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     public int val;
     *     public TreeNode left;
     *     public TreeNode right;
     *     public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    public class Solution {
        private int ans = -1001;
    
        public int MaxPathSum(TreeNode root) {
            dfs(root);
            return ans;
        }
    
        private int dfs(TreeNode root) {
            if (root == null) {
                return 0;
            }
            int left = Math.Max(0, dfs(root.left));
            int right = Math.Max(0, dfs(root.right));
            ans = Math.Max(ans, left + right + root.val);
            return root.val + Math.Max(left, right);
        }
    }
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    use std::rc::Rc;
    use std::cell::RefCell;
    impl Solution {
        fn dfs(root: &Option<Rc<RefCell<TreeNode>>>, res: &mut i32) -> i32 {
            if root.is_none() {
                return 0;
            }
            let node = root.as_ref().unwrap().borrow();
            let left = (0).max(Self::dfs(&node.left, res));
            let right = (0).max(Self::dfs(&node.right, res));
            *res = (node.val + left + right).max(*res);
            node.val + left.max(right)
        }
    
        pub fn max_path_sum(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
            let mut res = -1000;
            Self::dfs(&root, &mut res);
            res
        }
    }
    
    

All Problems

All Solutions