Welcome to Subscribe On Youtube
118. Pascal’s Triangle
Description
Given an integer numRows
, return the first numRows of Pascal's triangle.
In Pascal's triangle, each number is the sum of the two numbers directly above it as shown:
Example 1:
Input: numRows = 5 Output: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]
Example 2:
Input: numRows = 1 Output: [[1]]
Constraints:
1 <= numRows <= 30
Solutions
Solution 1: Simulation
First, we create an answer array $f$, and then set the first row of $f$ to $[1]$. Next, starting from the second row, the first and last elements of each row are $1$, and the other elements are calculated by $f[i][j] = f[i - 1][j - 1] + f[i - 1][j]$.
The time complexity is $O(n^2)$, and the space complexity is $O(n^2)$. Here, $n$ is the number of rows.
-
class Solution { public List<List<Integer>> generate(int numRows) { List<List<Integer>> f = new ArrayList<>(); f.add(List.of(1)); for (int i = 0; i < numRows - 1; ++i) { List<Integer> g = new ArrayList<>(); g.add(1); for (int j = 0; j < f.get(i).size() - 1; ++j) { g.add(f.get(i).get(j) + f.get(i).get(j + 1)); } g.add(1); f.add(g); } return f; } }
-
class Solution { public: vector<vector<int>> generate(int numRows) { vector<vector<int>> f; f.push_back(vector<int>(1, 1)); for (int i = 0; i < numRows - 1; ++i) { vector<int> g; g.push_back(1); for (int j = 0; j < f[i].size() - 1; ++j) { g.push_back(f[i][j] + f[i][j + 1]); } g.push_back(1); f.push_back(g); } return f; } };
-
class Solution: def generate(self, numRows: int) -> List[List[int]]: f = [[1]] for i in range(numRows - 1): g = [1] + [a + b for a, b in pairwise(f[-1])] + [1] f.append(g) return f
-
func generate(numRows int) [][]int { f := [][]int{[]int{1} } for i := 0; i < numRows-1; i++ { g := []int{1} for j := 0; j < len(f[i])-1; j++ { g = append(g, f[i][j]+f[i][j+1]) } g = append(g, 1) f = append(f, g) } return f }
-
function generate(numRows: number): number[][] { const f: number[][] = [[1]]; for (let i = 0; i < numRows - 1; ++i) { const g: number[] = [1]; for (let j = 0; j < f[i].length - 1; ++j) { g.push(f[i][j] + f[i][j + 1]); } g.push(1); f.push(g); } return f; }
-
/** * @param {number} numRows * @return {number[][]} */ var generate = function (numRows) { const f = [[1]]; for (let i = 0; i < numRows - 1; ++i) { const g = [1]; for (let j = 0; j < f[i].length - 1; ++j) { g.push(f[i][j] + f[i][j + 1]); } g.push(1); f.push(g); } return f; };
-
impl Solution { #[allow(dead_code)] pub fn generate(num_rows: i32) -> Vec<Vec<i32>> { let mut ret_vec: Vec<Vec<i32>> = Vec::new(); let mut cur_vec: Vec<i32> = Vec::new(); for i in 0..num_rows as usize { let mut new_vec: Vec<i32> = vec![1; i + 1]; for j in 1..i { new_vec[j] = cur_vec[j - 1] + cur_vec[j]; } cur_vec = new_vec.clone(); ret_vec.push(new_vec); } ret_vec } }