Welcome to Subscribe On Youtube
115. Distinct Subsequences
Description
Given two strings s and t, return the number of distinct subsequences of s which equals t.
The test cases are generated so that the answer fits on a 32-bit signed integer.
Example 1:
Input: s = "rabbbit", t = "rabbit" Output: 3 Explanation: As shown below, there are 3 ways you can generate "rabbit" from s.rabbbit
rabbbit
rabbbit
Example 2:
Input: s = "babgbag", t = "bag" Output: 5 Explanation: As shown below, there are 5 ways you can generate "bag" from s.babgbag
babgbag
babgbag
babgbag
babgbag
Constraints:
1 <= s.length, t.length <= 1000
s
andt
consist of English letters.
Solutions
Solution 1: Dynamic Programming
We define $f[i][j]$ as the number of schemes where the first $i$ characters of string $s$ form the first $j$ characters of string $t$. Initially, $f[i][0]=1$ for all $i \in [0,m]$.
When $i > 0$, we consider the calculation of $f[i][j]$:
- When $s[i-1] \ne t[j-1]$, we cannot select $s[i-1]$, so $f[i][j]=f[i-1][j]$;
- Otherwise, we can select $s[i-1]$, so $f[i][j]=f[i-1][j-1]$.
Therefore, we have the following state transition equation:
\[f[i][j]=\left\{ \begin{aligned} &f[i-1][j], &s[i-1] \ne t[j-1] \\ &f[i-1][j-1]+f[i-1][j], &s[i-1]=t[j-1] \end{aligned} \right.\]The final answer is $f[m][n]$, where $m$ and $n$ are the lengths of strings $s$ and $t$ respectively.
The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$.
We notice that the calculation of $f[i][j]$ is only related to $f[i-1][..]$. Therefore, we can optimize the first dimension, reducing the space complexity to $O(n)$.
-
class Solution { public int numDistinct(String s, String t) { int n = t.length(); int[] f = new int[n + 1]; f[0] = 1; for (char a : s.toCharArray()) { for (int j = n; j > 0; --j) { char b = t.charAt(j - 1); if (a == b) { f[j] += f[j - 1]; } } } return f[n]; } }
-
class Solution { public: int numDistinct(string s, string t) { int n = t.size(); unsigned long long f[n + 1]; memset(f, 0, sizeof(f)); f[0] = 1; for (char& a : s) { for (int j = n; j; --j) { char b = t[j - 1]; if (a == b) { f[j] += f[j - 1]; } } } return f[n]; } };
-
class Solution: def numDistinct(self, s: str, t: str) -> int: n = len(t) f = [1] + [0] * n for a in s: for j in range(n, 0, -1): if a == t[j - 1]: f[j] += f[j - 1] return f[n]
-
func numDistinct(s string, t string) int { n := len(t) f := make([]int, n+1) f[0] = 1 for _, a := range s { for j := n; j > 0; j-- { if b := t[j-1]; byte(a) == b { f[j] += f[j-1] } } } return f[n] }
-
function numDistinct(s: string, t: string): number { const n = t.length; const f: number[] = new Array(n + 1).fill(0); f[0] = 1; for (const a of s) { for (let j = n; j; --j) { const b = t[j - 1]; if (a === b) { f[j] += f[j - 1]; } } } return f[n]; }
-
impl Solution { #[allow(dead_code)] pub fn num_distinct(s: String, t: String) -> i32 { let n = s.len(); let m = t.len(); let mut dp: Vec<Vec<u64>> = vec![vec![0; m + 1]; n + 1]; // Initialize the dp vector for i in 0..=n { dp[i][0] = 1; } // Begin the actual dp process for i in 1..=n { for j in 1..=m { dp[i][j] = if s.as_bytes()[i - 1] == t.as_bytes()[j - 1] { dp[i - 1][j] + dp[i - 1][j - 1] } else { dp[i - 1][j] }; } } dp[n][m] as i32 } }