Welcome to Subscribe On Youtube

113. Path Sum II

Description

Given the root of a binary tree and an integer targetSum, return all root-to-leaf paths where the sum of the node values in the path equals targetSum. Each path should be returned as a list of the node values, not node references.

A root-to-leaf path is a path starting from the root and ending at any leaf node. A leaf is a node with no children.

 

Example 1:

Input: root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
Output: [[5,4,11,2],[5,8,4,5]]
Explanation: There are two paths whose sum equals targetSum:
5 + 4 + 11 + 2 = 22
5 + 8 + 4 + 5 = 22

Example 2:

Input: root = [1,2,3], targetSum = 5
Output: []

Example 3:

Input: root = [1,2], targetSum = 0
Output: []

 

Constraints:

  • The number of nodes in the tree is in the range [0, 5000].
  • -1000 <= Node.val <= 1000
  • -1000 <= targetSum <= 1000

Solutions

Solution 1: DFS

We start from the root node, recursively traverse all paths from the root node to the leaf nodes, and record the path sum. When we traverse to a leaf node, if the current path sum equals targetSum, then we add this path to the answer.

The time complexity is $O(n^2)$, where $n$ is the number of nodes in the binary tree. The space complexity is $O(n)$.

  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        private List<List<Integer>> ans = new ArrayList<>();
        private List<Integer> t = new ArrayList<>();
    
        public List<List<Integer>> pathSum(TreeNode root, int targetSum) {
            dfs(root, targetSum);
            return ans;
        }
    
        private void dfs(TreeNode root, int s) {
            if (root == null) {
                return;
            }
            s -= root.val;
            t.add(root.val);
            if (root.left == null && root.right == null && s == 0) {
                ans.add(new ArrayList<>(t));
            }
            dfs(root.left, s);
            dfs(root.right, s);
            t.remove(t.size() - 1);
        }
    }
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        vector<vector<int>> pathSum(TreeNode* root, int targetSum) {
            vector<vector<int>> ans;
            vector<int> t;
            function<void(TreeNode*, int)> dfs = [&](TreeNode* root, int s) {
                if (!root) return;
                s -= root->val;
                t.emplace_back(root->val);
                if (!root->left && !root->right && s == 0) ans.emplace_back(t);
                dfs(root->left, s);
                dfs(root->right, s);
                t.pop_back();
            };
            dfs(root, targetSum);
            return ans;
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def pathSum(self, root: Optional[TreeNode], targetSum: int) -> List[List[int]]:
            def dfs(root, s):
                if root is None:
                    return
                s += root.val
                t.append(root.val)
                if root.left is None and root.right is None and s == targetSum:
                    ans.append(t[:])
                dfs(root.left, s)
                dfs(root.right, s)
                t.pop()
    
            ans = []
            t = []
            dfs(root, 0)
            return ans
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func pathSum(root *TreeNode, targetSum int) (ans [][]int) {
    	t := []int{}
    	var dfs func(*TreeNode, int)
    	dfs = func(root *TreeNode, s int) {
    		if root == nil {
    			return
    		}
    		s -= root.Val
    		t = append(t, root.Val)
    		if root.Left == nil && root.Right == nil && s == 0 {
    			ans = append(ans, slices.Clone(t))
    		}
    		dfs(root.Left, s)
    		dfs(root.Right, s)
    		t = t[:len(t)-1]
    	}
    	dfs(root, targetSum)
    	return
    }
    
  • /**
     * Definition for a binary tree node.
     * function TreeNode(val, left, right) {
     *     this.val = (val===undefined ? 0 : val)
     *     this.left = (left===undefined ? null : left)
     *     this.right = (right===undefined ? null : right)
     * }
     */
    /**
     * @param {TreeNode} root
     * @param {number} targetSum
     * @return {number[][]}
     */
    var pathSum = function (root, targetSum) {
        const ans = [];
        const t = [];
        function dfs(root, s) {
            if (!root) return;
            s -= root.val;
            t.push(root.val);
            if (!root.left && !root.right && s == 0) ans.push([...t]);
            dfs(root.left, s);
            dfs(root.right, s);
            t.pop();
        }
        dfs(root, targetSum);
        return ans;
    };
    
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    use std::rc::Rc;
    use std::cell::RefCell;
    impl Solution {
        fn dfs(
            root: Option<Rc<RefCell<TreeNode>>>,
            paths: &mut Vec<i32>,
            mut target_sum: i32,
            res: &mut Vec<Vec<i32>>
        ) {
            if let Some(node) = root {
                let mut node = node.borrow_mut();
                target_sum -= node.val;
                paths.push(node.val);
                if node.left.is_none() && node.right.is_none() {
                    if target_sum == 0 {
                        res.push(paths.clone());
                    }
                } else {
                    if node.left.is_some() {
                        Self::dfs(node.left.take(), paths, target_sum, res);
                    }
                    if node.right.is_some() {
                        Self::dfs(node.right.take(), paths, target_sum, res);
                    }
                }
                paths.pop();
            }
        }
    
        pub fn path_sum(root: Option<Rc<RefCell<TreeNode>>>, target_sum: i32) -> Vec<Vec<i32>> {
            let mut res = vec![];
            let mut paths = vec![];
            Self::dfs(root, &mut paths, target_sum, &mut res);
            res
        }
    }
    
    

All Problems

All Solutions