Welcome to Subscribe On Youtube

110. Balanced Binary Tree

Description

Given a binary tree, determine if it is height-balanced.

 

Example 1:

Input: root = [3,9,20,null,null,15,7]
Output: true

Example 2:

Input: root = [1,2,2,3,3,null,null,4,4]
Output: false

Example 3:

Input: root = []
Output: true

 

Constraints:

  • The number of nodes in the tree is in the range [0, 5000].
  • -104 <= Node.val <= 104

Solutions

Solution 1: Bottom-Up Recursion

We define a function $height(root)$ to calculate the height of a binary tree, with the following logic:

  • If the binary tree $root$ is null, return $0$.
  • Otherwise, recursively calculate the heights of the left and right subtrees, denoted as $l$ and $r$ respectively. If either $l$ or $r$ is $-1$, or the absolute difference between $l$ and $r$ is greater than $1$, then return $-1$. Otherwise, return $max(l, r) + 1$.

Therefore, if the function $height(root)$ returns $-1$, it means the binary tree $root$ is not balanced. Otherwise, it is balanced.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree.

  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public boolean isBalanced(TreeNode root) {
            return height(root) >= 0;
        }
    
        private int height(TreeNode root) {
            if (root == null) {
                return 0;
            }
            int l = height(root.left);
            int r = height(root.right);
            if (l == -1 || r == -1 || Math.abs(l - r) > 1) {
                return -1;
            }
            return 1 + Math.max(l, r);
        }
    }
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        bool isBalanced(TreeNode* root) {
            function<int(TreeNode*)> height = [&](TreeNode* root) {
                if (!root) {
                    return 0;
                }
                int l = height(root->left);
                int r = height(root->right);
                if (l == -1 || r == -1 || abs(l - r) > 1) {
                    return -1;
                }
                return 1 + max(l, r);
            };
            return height(root) >= 0;
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def isBalanced(self, root: Optional[TreeNode]) -> bool:
            def height(root):
                if root is None:
                    return 0
                l, r = height(root.left), height(root.right)
                if l == -1 or r == -1 or abs(l - r) > 1:
                    return -1
                return 1 + max(l, r)
    
            return height(root) >= 0
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func isBalanced(root *TreeNode) bool {
    	var height func(*TreeNode) int
    	height = func(root *TreeNode) int {
    		if root == nil {
    			return 0
    		}
    		l, r := height(root.Left), height(root.Right)
    		if l == -1 || r == -1 || abs(l-r) > 1 {
    			return -1
    		}
    		if l > r {
    			return 1 + l
    		}
    		return 1 + r
    	}
    	return height(root) >= 0
    }
    
    func abs(x int) int {
    	if x < 0 {
    		return -x
    	}
    	return x
    }
    
  • /**
     * Definition for a binary tree node.
     * class TreeNode {
     *     val: number
     *     left: TreeNode | null
     *     right: TreeNode | null
     *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
     *         this.val = (val===undefined ? 0 : val)
     *         this.left = (left===undefined ? null : left)
     *         this.right = (right===undefined ? null : right)
     *     }
     * }
     */
    
    function isBalanced(root: TreeNode | null): boolean {
        const dfs = (root: TreeNode | null) => {
            if (root == null) {
                return 0;
            }
            const left = dfs(root.left);
            const right = dfs(root.right);
            if (left === -1 || right === -1 || Math.abs(left - right) > 1) {
                return -1;
            }
            return 1 + Math.max(left, right);
        };
        return dfs(root) > -1;
    }
    
    
  • /**
     * Definition for a binary tree node.
     * function TreeNode(val, left, right) {
     *     this.val = (val===undefined ? 0 : val)
     *     this.left = (left===undefined ? null : left)
     *     this.right = (right===undefined ? null : right)
     * }
     */
    /**
     * @param {TreeNode} root
     * @return {boolean}
     */
    var isBalanced = function (root) {
        const height = root => {
            if (!root) {
                return 0;
            }
            const l = height(root.left);
            const r = height(root.right);
            if (l == -1 || r == -1 || Math.abs(l - r) > 1) {
                return -1;
            }
            return 1 + Math.max(l, r);
        };
        return height(root) >= 0;
    };
    
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    use std::rc::Rc;
    use std::cell::RefCell;
    impl Solution {
        pub fn is_balanced(root: Option<Rc<RefCell<TreeNode>>>) -> bool {
            Self::dfs(&root) > -1
        }
    
        fn dfs(root: &Option<Rc<RefCell<TreeNode>>>) -> i32 {
            if root.is_none() {
                return 0;
            }
            let node = root.as_ref().unwrap().borrow();
            let left = Self::dfs(&node.left);
            let right = Self::dfs(&node.right);
            if left == -1 || right == -1 || (left - right).abs() > 1 {
                return -1;
            }
            1 + left.max(right)
        }
    }
    
    

All Problems

All Solutions