Welcome to Subscribe On Youtube
110. Balanced Binary Tree
Description
Given a binary tree, determine if it is height-balanced.
Example 1:
Input: root = [3,9,20,null,null,15,7] Output: true
Example 2:
Input: root = [1,2,2,3,3,null,null,4,4] Output: false
Example 3:
Input: root = [] Output: true
Constraints:
- The number of nodes in the tree is in the range
[0, 5000]
. -104 <= Node.val <= 104
Solutions
Solution 1: Bottom-Up Recursion
We define a function $height(root)$ to calculate the height of a binary tree, with the following logic:
- If the binary tree $root$ is null, return $0$.
- Otherwise, recursively calculate the heights of the left and right subtrees, denoted as $l$ and $r$ respectively. If either $l$ or $r$ is $-1$, or the absolute difference between $l$ and $r$ is greater than $1$, then return $-1$. Otherwise, return $max(l, r) + 1$.
Therefore, if the function $height(root)$ returns $-1$, it means the binary tree $root$ is not balanced. Otherwise, it is balanced.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree.
-
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public boolean isBalanced(TreeNode root) { return height(root) >= 0; } private int height(TreeNode root) { if (root == null) { return 0; } int l = height(root.left); int r = height(root.right); if (l == -1 || r == -1 || Math.abs(l - r) > 1) { return -1; } return 1 + Math.max(l, r); } }
-
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: bool isBalanced(TreeNode* root) { function<int(TreeNode*)> height = [&](TreeNode* root) { if (!root) { return 0; } int l = height(root->left); int r = height(root->right); if (l == -1 || r == -1 || abs(l - r) > 1) { return -1; } return 1 + max(l, r); }; return height(root) >= 0; } };
-
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def isBalanced(self, root: Optional[TreeNode]) -> bool: def height(root): if root is None: return 0 l, r = height(root.left), height(root.right) if l == -1 or r == -1 or abs(l - r) > 1: return -1 return 1 + max(l, r) return height(root) >= 0
-
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func isBalanced(root *TreeNode) bool { var height func(*TreeNode) int height = func(root *TreeNode) int { if root == nil { return 0 } l, r := height(root.Left), height(root.Right) if l == -1 || r == -1 || abs(l-r) > 1 { return -1 } if l > r { return 1 + l } return 1 + r } return height(root) >= 0 } func abs(x int) int { if x < 0 { return -x } return x }
-
/** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ function isBalanced(root: TreeNode | null): boolean { const dfs = (root: TreeNode | null) => { if (root == null) { return 0; } const left = dfs(root.left); const right = dfs(root.right); if (left === -1 || right === -1 || Math.abs(left - right) > 1) { return -1; } return 1 + Math.max(left, right); }; return dfs(root) > -1; }
-
/** * Definition for a binary tree node. * function TreeNode(val, left, right) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } */ /** * @param {TreeNode} root * @return {boolean} */ var isBalanced = function (root) { const height = root => { if (!root) { return 0; } const l = height(root.left); const r = height(root.right); if (l == -1 || r == -1 || Math.abs(l - r) > 1) { return -1; } return 1 + Math.max(l, r); }; return height(root) >= 0; };
-
// Definition for a binary tree node. // #[derive(Debug, PartialEq, Eq)] // pub struct TreeNode { // pub val: i32, // pub left: Option<Rc<RefCell<TreeNode>>>, // pub right: Option<Rc<RefCell<TreeNode>>>, // } // // impl TreeNode { // #[inline] // pub fn new(val: i32) -> Self { // TreeNode { // val, // left: None, // right: None // } // } // } use std::rc::Rc; use std::cell::RefCell; impl Solution { pub fn is_balanced(root: Option<Rc<RefCell<TreeNode>>>) -> bool { Self::dfs(&root) > -1 } fn dfs(root: &Option<Rc<RefCell<TreeNode>>>) -> i32 { if root.is_none() { return 0; } let node = root.as_ref().unwrap().borrow(); let left = Self::dfs(&node.left); let right = Self::dfs(&node.right); if left == -1 || right == -1 || (left - right).abs() > 1 { return -1; } 1 + left.max(right) } }