Welcome to Subscribe On Youtube

108. Convert Sorted Array to Binary Search Tree

Description

Given an integer array nums where the elements are sorted in ascending order, convert it to a height-balanced binary search tree.

 

Example 1:

Input: nums = [-10,-3,0,5,9]
Output: [0,-3,9,-10,null,5]
Explanation: [0,-10,5,null,-3,null,9] is also accepted:

Example 2:

Input: nums = [1,3]
Output: [3,1]
Explanation: [1,null,3] and [3,1] are both height-balanced BSTs.

 

Constraints:

  • 1 <= nums.length <= 104
  • -104 <= nums[i] <= 104
  • nums is sorted in a strictly increasing order.

Solutions

Solution 1: Binary Search + Recursion

We design a recursive function $dfs(l, r)$, which indicates that the node values of the current binary search tree to be constructed are all within the index range $[l, r]$ of the array nums. This function returns the root node of the constructed binary search tree.

The execution process of the function $dfs(l, r)$ is as follows:

  1. If $l > r$, it means the current array is empty, return null.
  2. If $l \leq r$, take the element with the index $mid = \lfloor \frac{l + r}{2} \rfloor$ in the array as the root node of the current binary search tree, where $\lfloor x \rfloor$ represents rounding down $x$.
  3. Recursively construct the left subtree of the current binary search tree, whose root node value is the element with the index $mid - 1$ in the array, and the node values of the left subtree are all within the index range $[l, mid - 1]$ of the array.
  4. Recursively construct the right subtree of the current binary search tree, whose root node value is the element with the index $mid + 1$ in the array, and the node values of the right subtree are all within the index range $[mid + 1, r]$ of the array.
  5. Return the root node of the current binary search tree.

The answer is the return value of the function $dfs(0, n - 1)$.

The time complexity is $O(n)$, and the space complexity is $O(\log n)$. Here, $n$ is the length of the array nums.

  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        private int[] nums;
    
        public TreeNode sortedArrayToBST(int[] nums) {
            this.nums = nums;
            return dfs(0, nums.length - 1);
        }
    
        private TreeNode dfs(int l, int r) {
            if (l > r) {
                return null;
            }
            int mid = (l + r) >> 1;
            TreeNode left = dfs(l, mid - 1);
            TreeNode right = dfs(mid + 1, r);
            return new TreeNode(nums[mid], left, right);
        }
    }
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        TreeNode* sortedArrayToBST(vector<int>& nums) {
            function<TreeNode*(int, int)> dfs = [&](int l, int r) -> TreeNode* {
                if (l > r) {
                    return nullptr;
                }
                int mid = (l + r) >> 1;
                auto left = dfs(l, mid - 1);
                auto right = dfs(mid + 1, r);
                return new TreeNode(nums[mid], left, right);
            };
            return dfs(0, nums.size() - 1);
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def sortedArrayToBST(self, nums: List[int]) -> Optional[TreeNode]:
            def dfs(l, r):
                if l > r:
                    return None
                mid = (l + r) >> 1
                left = dfs(l, mid - 1)
                right = dfs(mid + 1, r)
                return TreeNode(nums[mid], left, right)
    
            return dfs(0, len(nums) - 1)
    
    ############
    
    # Definition for a binary tree node.
    # class TreeNode(object):
    #     def __init__(self, x):
    #         self.val = x
    #         self.left = None
    #         self.right = None
    
    class Solution(object):
      def sortedArrayToBST(self, nums):
        """
        :type nums: List[int]
        :rtype: TreeNode
        """
        if nums:
          midPos = len(nums) / 2
          mid = nums[midPos]
          root = TreeNode(mid)
          root.left = self.sortedArrayToBST(nums[:midPos])
          root.right = self.sortedArrayToBST(nums[midPos + 1:])
          return root
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func sortedArrayToBST(nums []int) *TreeNode {
    	var dfs func(int, int) *TreeNode
    	dfs = func(l, r int) *TreeNode {
    		if l > r {
    			return nil
    		}
    		mid := (l + r) >> 1
    		left, right := dfs(l, mid-1), dfs(mid+1, r)
    		return &TreeNode{nums[mid], left, right}
    	}
    	return dfs(0, len(nums)-1)
    }
    
  • /**
     * Definition for a binary tree node.
     * class TreeNode {
     *     val: number
     *     left: TreeNode | null
     *     right: TreeNode | null
     *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
     *         this.val = (val===undefined ? 0 : val)
     *         this.left = (left===undefined ? null : left)
     *         this.right = (right===undefined ? null : right)
     *     }
     * }
     */
    
    function sortedArrayToBST(nums: number[]): TreeNode | null {
        const n = nums.length;
        if (n === 0) {
            return null;
        }
        const mid = n >> 1;
        return new TreeNode(
            nums[mid],
            sortedArrayToBST(nums.slice(0, mid)),
            sortedArrayToBST(nums.slice(mid + 1)),
        );
    }
    
    
  • /**
     * Definition for a binary tree node.
     * function TreeNode(val, left, right) {
     *     this.val = (val===undefined ? 0 : val)
     *     this.left = (left===undefined ? null : left)
     *     this.right = (right===undefined ? null : right)
     * }
     */
    /**
     * @param {number[]} nums
     * @return {TreeNode}
     */
    var sortedArrayToBST = function (nums) {
        const dfs = (l, r) => {
            if (l > r) {
                return null;
            }
            const mid = (l + r) >> 1;
            const left = dfs(l, mid - 1);
            const right = dfs(mid + 1, r);
            return new TreeNode(nums[mid], left, right);
        };
        return dfs(0, nums.length - 1);
    };
    
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    use std::rc::Rc;
    use std::cell::RefCell;
    impl Solution {
        fn to_bst(nums: &Vec<i32>, start: usize, end: usize) -> Option<Rc<RefCell<TreeNode>>> {
            if start >= end {
                return None;
            }
            let mid = start + (end - start) / 2;
            Some(
                Rc::new(
                    RefCell::new(TreeNode {
                        val: nums[mid],
                        left: Self::to_bst(nums, start, mid),
                        right: Self::to_bst(nums, mid + 1, end),
                    })
                )
            )
        }
    
        pub fn sorted_array_to_bst(nums: Vec<i32>) -> Option<Rc<RefCell<TreeNode>>> {
            Self::to_bst(&nums, 0, nums.len())
        }
    }
    
    

All Problems

All Solutions