Welcome to Subscribe On Youtube
107. Binary Tree Level Order Traversal II
Description
Given the root
of a binary tree, return the bottom-up level order traversal of its nodes' values. (i.e., from left to right, level by level from leaf to root).
Example 1:
Input: root = [3,9,20,null,null,15,7] Output: [[15,7],[9,20],[3]]
Example 2:
Input: root = [1] Output: [[1]]
Example 3:
Input: root = [] Output: []
Constraints:
- The number of nodes in the tree is in the range
[0, 2000]
. -1000 <= Node.val <= 1000
Solutions
Solution 1: BFS
The approach is the same as in 102. Binary Tree Level Order Traversal, just reverse the result in the end.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree.
-
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public List<List<Integer>> levelOrderBottom(TreeNode root) { LinkedList<List<Integer>> ans = new LinkedList<>(); if (root == null) { return ans; } Deque<TreeNode> q = new LinkedList<>(); q.offerLast(root); while (!q.isEmpty()) { List<Integer> t = new ArrayList<>(); for (int i = q.size(); i > 0; --i) { TreeNode node = q.pollFirst(); t.add(node.val); if (node.left != null) { q.offerLast(node.left); } if (node.right != null) { q.offerLast(node.right); } } ans.addFirst(t); } return ans; } }
-
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: vector<vector<int>> levelOrderBottom(TreeNode* root) { vector<vector<int>> ans; if (!root) return ans; queue<TreeNode*> q{ {root} }; while (!q.empty()) { vector<int> t; for (int i = q.size(); i; --i) { auto node = q.front(); q.pop(); t.emplace_back(node->val); if (node->left) q.push(node->left); if (node->right) q.push(node->right); } ans.emplace_back(t); } reverse(ans.begin(), ans.end()); return ans; } };
-
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def levelOrderBottom(self, root: Optional[TreeNode]) -> List[List[int]]: ans = [] if root is None: return ans q = deque([root]) while q: t = [] for _ in range(len(q)): node = q.popleft() t.append(node.val) if node.left: q.append(node.left) if node.right: q.append(node.right) ans.append(t) return ans[::-1]
-
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func levelOrderBottom(root *TreeNode) [][]int { ans := [][]int{} if root == nil { return ans } q := []*TreeNode{root} for len(q) > 0 { var t []int for i := len(q); i > 0; i-- { node := q[0] q = q[1:] t = append(t, node.Val) if node.Left != nil { q = append(q, node.Left) } if node.Right != nil { q = append(q, node.Right) } } ans = append([][]int{t}, ans...) } return ans }
-
/** * Definition for a binary tree node. * function TreeNode(val, left, right) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } */ /** * @param {TreeNode} root * @return {number[][]} */ var levelOrderBottom = function (root) { const ans = []; if (!root) return ans; const q = [root]; while (q.length) { const t = []; for (let i = q.length; i > 0; --i) { const node = q.shift(); t.push(node.val); if (node.left) q.push(node.left); if (node.right) q.push(node.right); } ans.unshift(t); } return ans; };
-
// Definition for a binary tree node. // #[derive(Debug, PartialEq, Eq)] // pub struct TreeNode { // pub val: i32, // pub left: Option<Rc<RefCell<TreeNode>>>, // pub right: Option<Rc<RefCell<TreeNode>>>, // } // // impl TreeNode { // #[inline] // pub fn new(val: i32) -> Self { // TreeNode { // val, // left: None, // right: None // } // } // } use std::{ rc::Rc, cell::RefCell, collections::VecDeque }; impl Solution { #[allow(dead_code)] pub fn level_order_bottom(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<Vec<i32>> { if root.is_none() { return vec![]; } let mut ret_vec = Vec::new(); let mut q = VecDeque::new(); q.push_back(root); while !q.is_empty() { let mut cur_vec = Vec::new(); let mut next_q = VecDeque::new(); while !q.is_empty() { let cur_front = q.front().unwrap().clone(); q.pop_front(); cur_vec.push(cur_front.as_ref().unwrap().borrow().val); let left = cur_front.as_ref().unwrap().borrow().left.clone(); let right = cur_front.as_ref().unwrap().borrow().right.clone(); if !left.is_none() { next_q.push_back(left); } if !right.is_none() { next_q.push_back(right); } } ret_vec.push(cur_vec); q = next_q; } ret_vec.reverse(); ret_vec } }
-
/** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ function levelOrderBottom(root: TreeNode | null): number[][] { const ans: number[][] = []; if (!root) { return ans; } const q: TreeNode[] = [root]; while (q.length) { const t: number[] = []; const qq: TreeNode[] = []; for (const { val, left, right } of q) { t.push(val); left && qq.push(left); right && qq.push(right); } ans.push(t); q.splice(0, q.length, ...qq); } return ans.reverse(); }