Welcome to Subscribe On Youtube
103. Binary Tree Zigzag Level Order Traversal
Description
Given the root
of a binary tree, return the zigzag level order traversal of its nodes' values. (i.e., from left to right, then right to left for the next level and alternate between).
Example 1:
Input: root = [3,9,20,null,null,15,7] Output: [[3],[20,9],[15,7]]
Example 2:
Input: root = [1] Output: [[1]]
Example 3:
Input: root = [] Output: []
Constraints:
- The number of nodes in the tree is in the range
[0, 2000]
. -100 <= Node.val <= 100
Solutions
Solution 1: BFS
To implement zigzag level order traversal, we need to add a flag left
on the basis of level order traversal. This flag is used to mark the order of the node values in the current level. If left
is true
, the node values of the current level are stored in the result array ans
from left to right. If left
is false
, the node values of the current level are stored in the result array ans
from right to left.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree.
-
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public List<List<Integer>> zigzagLevelOrder(TreeNode root) { List<List<Integer>> ans = new ArrayList<>(); if (root == null) { return ans; } Deque<TreeNode> q = new ArrayDeque<>(); q.offer(root); boolean left = true; while (!q.isEmpty()) { List<Integer> t = new ArrayList<>(); for (int n = q.size(); n > 0; --n) { TreeNode node = q.poll(); t.add(node.val); if (node.left != null) { q.offer(node.left); } if (node.right != null) { q.offer(node.right); } } if (!left) { Collections.reverse(t); } ans.add(t); left = !left; } return ans; } } ////// public class Binary_Tree_Zigzag_Level_Order_Traversal { /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ // count as level marker class Solution { public List<List<Integer>> zigzagLevelOrder(TreeNode root) { List<List<Integer>> result = new ArrayList<>(); if (root == null) { return result; } boolean isLeftToRight = true; Queue<TreeNode> q = new LinkedList<>(); q.offer(root); int currentLevelCount = 1; int nextLevelCount = 0; List<Integer> one = new ArrayList<>(); while (!q.isEmpty()) { TreeNode current = q.poll(); currentLevelCount--; if (isLeftToRight) { one.add(current.val); } else { one.add(0, current.val); } if (current.left != null) { q.offer(current.left); nextLevelCount++; } if (current.right != null) { q.offer(current.right); nextLevelCount++; } if (currentLevelCount == 0) { currentLevelCount = nextLevelCount; nextLevelCount = 0; result.add(one); one = new ArrayList<>(); isLeftToRight = !isLeftToRight; } } return result; } } public class Solution_nullAsMarker { public List<List<Integer>> zigzagLevelOrder(TreeNode root) { List<List<Integer>> list = new ArrayList<List<Integer>>(); if (root == null) { return list; } Queue<TreeNode> q = new LinkedList<>(); q.offer(root); q.offer(null);// @note: use null as marker for end of level boolean direction = true; // true: left=>right, false: right=>left List<Integer> oneLevel = new ArrayList<>(); while (!q.isEmpty()) { TreeNode current = q.poll(); if (current == null) { List<Integer> copy = new ArrayList<>(oneLevel); list.add(copy); // clean after one level recorded oneLevel.clear();// @memorize: this api direction = !direction; // @note:@memorize: if stack is now empty then DO NOT add null, or else infinite looping // sk.offer(null); // add marker if (!q.isEmpty()) { q.offer(null); // add marker } continue; } if (direction) { oneLevel.add(current.val); } else { oneLevel.add(0, current.val); } // @note:@memorize: since using null as marker, then must avoid adding null when children are null // sk.offer(current.left); // sk.offer(current.right); if (current.left != null) { q.offer(current.left); } if (current.right != null) { q.offer(current.right); } } return list; } } }
-
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: vector<vector<int>> zigzagLevelOrder(TreeNode* root) { vector<vector<int>> ans; if (!root) return ans; queue<TreeNode*> q{ {root} }; int left = 1; while (!q.empty()) { vector<int> t; for (int n = q.size(); n; --n) { auto node = q.front(); q.pop(); t.emplace_back(node->val); if (node->left) q.push(node->left); if (node->right) q.push(node->right); } if (!left) reverse(t.begin(), t.end()); ans.emplace_back(t); left ^= 1; } return ans; } };
-
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right ''' can also use list.insert() >>> my_list = [2, 3, 4] >>> my_list.insert(0, 1) # Insert 1 at the head of the list >>> print(my_list) # Output: [1, 2, 3, 4] >>> a = deque([]) >>> a deque([]) >>> a.append(1) >>> a.append(2) >>> a.append(3) >>> a deque([1, 2, 3]) >>> >>> a.append(0, 555) Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: deque.append() takes exactly one argument (2 given) >>> a.insert(0, 555) >>> a deque([555, 1, 2, 3]) ''' from collections import deque class Solution: def zigzagLevelOrder(self, root: Optional[TreeNode]) -> List[List[int]]: ans = [] if root is None: return ans q = deque([root]) ans = [] left = True while q: t = [] for _ in range(len(q)): node = q.popleft() t.append(node.val) if node.left: q.append(node.left) if node.right: q.append(node.right) ans.append(t if left else t[::-1]) left = (not left) return ans ############ # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None from collections import deque class Solution(object): def zigzagLevelOrder(self, root): """ :type root: TreeNode :rtype: List[List[int]] """ stack = deque([root]) ans = [] odd = True while stack: level = [] for k in range(0, len(stack)): top = stack.popleft() if top is None: continue level.append(top.val) stack.append(top.left) stack.append(top.right) if level: if odd: ans.append(level) else: ans.append(level[::-1]) odd = not odd return ans ############ # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def zigzagLevelOrder(self, root: Optional[TreeNode]) -> List[List[int]]: ans = [] if root is None: return ans q = deque([root]) ans = [] left = 1 while q: t = [] for _ in range(len(q)): node = q.popleft() t.append(node.val) if node.left: q.append(node.left) if node.right: q.append(node.right) ans.append(t if left else t[::-1]) left ^= 1 return ans
-
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func zigzagLevelOrder(root *TreeNode) (ans [][]int) { if root == nil { return } q := []*TreeNode{root} left := true for len(q) > 0 { t := []int{} for n := len(q); n > 0; n-- { node := q[0] q = q[1:] t = append(t, node.Val) if node.Left != nil { q = append(q, node.Left) } if node.Right != nil { q = append(q, node.Right) } } if !left { for i, j := 0, len(t)-1; i < j; i, j = i+1, j-1 { t[i], t[j] = t[j], t[i] } } ans = append(ans, t) left = !left } return }
-
/** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ function zigzagLevelOrder(root: TreeNode | null): number[][] { const res = []; if (root == null) { return res; } let isDesc = false; const queue = [root]; while (queue.length !== 0) { const arr = queue.slice().map(() => { const { val, left, right } = queue.shift(); left && queue.push(left); right && queue.push(right); return val; }); res.push(isDesc ? arr.reverse() : arr); isDesc = !isDesc; } return res; }
-
/** * Definition for a binary tree node. * function TreeNode(val, left, right) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } */ /** * @param {TreeNode} root * @return {number[][]} */ var zigzagLevelOrder = function (root) { const ans = []; if (!root) { return ans; } const q = [root]; let left = 1; while (q.length) { const t = []; for (let n = q.length; n; --n) { const node = q.shift(); t.push(node.val); if (node.left) { q.push(node.left); } if (node.right) { q.push(node.right); } } if (!left) { t.reverse(); } ans.push(t); left ^= 1; } return ans; };
-
// Definition for a binary tree node. // #[derive(Debug, PartialEq, Eq)] // pub struct TreeNode { // pub val: i32, // pub left: Option<Rc<RefCell<TreeNode>>>, // pub right: Option<Rc<RefCell<TreeNode>>>, // } // // impl TreeNode { // #[inline] // pub fn new(val: i32) -> Self { // TreeNode { // val, // left: None, // right: None // } // } // } use std::rc::Rc; use std::cell::RefCell; use std::collections::VecDeque; impl Solution { pub fn zigzag_level_order(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<Vec<i32>> { let mut res = vec![]; if root.is_none() { return res; } let mut is_desc = false; let mut q = VecDeque::new(); q.push_back(root); while !q.is_empty() { let mut arr = vec![]; for _ in 0..q.len() { if let Some(node) = q.pop_front().unwrap() { let mut node = node.borrow_mut(); arr.push(node.val); if node.left.is_some() { q.push_back(node.left.take()); } if node.right.is_some() { q.push_back(node.right.take()); } } } if is_desc { arr.reverse(); } is_desc = !is_desc; res.push(arr); } res } }