Welcome to Subscribe On Youtube

101. Symmetric Tree

Description

Given the root of a binary tree, check whether it is a mirror of itself (i.e., symmetric around its center).

 

Example 1:

Input: root = [1,2,2,3,4,4,3]
Output: true

Example 2:

Input: root = [1,2,2,null,3,null,3]
Output: false

 

Constraints:

  • The number of nodes in the tree is in the range [1, 1000].
  • -100 <= Node.val <= 100

 

Follow up: Could you solve it both recursively and iteratively?

Solutions

Solution 1: Recursion

We design a function $dfs(root1, root2)$ to determine whether two binary trees are symmetric. The answer is $dfs(root, root)$.

The logic of the function $dfs(root1, root2)$ is as follows:

  • If both $root1$ and $root2$ are null, then the two binary trees are symmetric, return true.
  • If only one of $root1$ and $root2$ is null, or if $root1.val \neq root2.val$, then the two binary trees are not symmetric, return false.
  • Otherwise, determine whether the left subtree of $root1$ is symmetric to the right subtree of $root2$, and whether the right subtree of $root1$ is symmetric to the left subtree of $root2$. Here we use recursion.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree.

  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public boolean isSymmetric(TreeNode root) {
            return dfs(root, root);
        }
    
        private boolean dfs(TreeNode root1, TreeNode root2) {
            if (root1 == null && root2 == null) {
                return true;
            }
            if (root1 == null || root2 == null || root1.val != root2.val) {
                return false;
            }
            return dfs(root1.left, root2.right) && dfs(root1.right, root2.left);
        }
    }
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        bool isSymmetric(TreeNode* root) {
            function<bool(TreeNode*, TreeNode*)> dfs = [&](TreeNode* root1, TreeNode* root2) -> bool {
                if (!root1 && !root2) return true;
                if (!root1 || !root2 || root1->val != root2->val) return false;
                return dfs(root1->left, root2->right) && dfs(root1->right, root2->left);
            };
            return dfs(root, root);
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def isSymmetric(self, root: Optional[TreeNode]) -> bool:
            def dfs(root1, root2):
                if root1 is None and root2 is None:
                    return True
                if root1 is None or root2 is None or root1.val != root2.val:
                    return False
                return dfs(root1.left, root2.right) and dfs(root1.right, root2.left)
    
            return dfs(root, root)
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func isSymmetric(root *TreeNode) bool {
    	var dfs func(*TreeNode, *TreeNode) bool
    	dfs = func(root1, root2 *TreeNode) bool {
    		if root1 == nil && root2 == nil {
    			return true
    		}
    		if root1 == nil || root2 == nil || root1.Val != root2.Val {
    			return false
    		}
    		return dfs(root1.Left, root2.Right) && dfs(root1.Right, root2.Left)
    	}
    	return dfs(root, root)
    }
    
  • /**
     * Definition for a binary tree node.
     * class TreeNode {
     *     val: number
     *     left: TreeNode | null
     *     right: TreeNode | null
     *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
     *         this.val = (val===undefined ? 0 : val)
     *         this.left = (left===undefined ? null : left)
     *         this.right = (right===undefined ? null : right)
     *     }
     * }
     */
    
    const dfs = (root1: TreeNode | null, root2: TreeNode | null) => {
        if (root1 == root2) {
            return true;
        }
        if (root1 == null || root2 == null || root1.val != root2.val) {
            return false;
        }
        return dfs(root1.left, root2.right) && dfs(root1.right, root2.left);
    };
    
    function isSymmetric(root: TreeNode | null): boolean {
        return dfs(root.left, root.right);
    }
    
    
  • /**
     * Definition for a binary tree node.
     * function TreeNode(val, left, right) {
     *     this.val = (val===undefined ? 0 : val)
     *     this.left = (left===undefined ? null : left)
     *     this.right = (right===undefined ? null : right)
     * }
     */
    /**
     * @param {TreeNode} root
     * @return {boolean}
     */
    var isSymmetric = function (root) {
        function dfs(root1, root2) {
            if (!root1 && !root2) return true;
            if (!root1 || !root2 || root1.val != root2.val) return false;
            return dfs(root1.left, root2.right) && dfs(root1.right, root2.left);
        }
        return dfs(root, root);
    };
    
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    use std::rc::Rc;
    use std::cell::RefCell;
    impl Solution {
        fn dfs(root1: &Option<Rc<RefCell<TreeNode>>>, root2: &Option<Rc<RefCell<TreeNode>>>) -> bool {
            if root1.is_none() && root2.is_none() {
                return true;
            }
            if root1.is_none() || root2.is_none() {
                return false;
            }
            let node1 = root1.as_ref().unwrap().borrow();
            let node2 = root2.as_ref().unwrap().borrow();
            node1.val == node2.val &&
                Self::dfs(&node1.left, &node2.right) &&
                Self::dfs(&node1.right, &node2.left)
        }
    
        pub fn is_symmetric(root: Option<Rc<RefCell<TreeNode>>>) -> bool {
            let node = root.as_ref().unwrap().borrow();
            Self::dfs(&node.left, &node.right)
        }
    }
    
    

All Problems

All Solutions