Welcome to Subscribe On Youtube

98. Validate Binary Search Tree

Description

Given the root of a binary tree, determine if it is a valid binary search tree (BST).

A valid BST is defined as follows:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than the node's key.
  • Both the left and right subtrees must also be binary search trees.

 

Example 1:

Input: root = [2,1,3]
Output: true

Example 2:

Input: root = [5,1,4,null,null,3,6]
Output: false
Explanation: The root node's value is 5 but its right child's value is 4.

 

Constraints:

  • The number of nodes in the tree is in the range [1, 104].
  • -231 <= Node.val <= 231 - 1

Solutions

Solution 1: Recursion

In-order traversal. If it is a valid binary search tree, then the sequence traversed should be monotonically increasing. So, we only need to compare and judge whether the current number traversed is greater than the previous number.

Alternatively, consider the subtree with root as the root, whether all node values are within the valid range, and judge recursively.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the tree.

Note: remember below in invalid, 7 should go right of 5

   5
  / \
 1   8
  \   \
   7   10
  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        private Integer prev;
    
        public boolean isValidBST(TreeNode root) {
            prev = null;
            return dfs(root);
        }
    
        private boolean dfs(TreeNode root) {
            if (root == null) {
                return true;
            }
            if (!dfs(root.left)) {
                return false;
            }
            if (prev != null && prev >= root.val) {
                return false;
            }
            prev = root.val;
            if (!dfs(root.right)) {
                return false;
            }
            return true;
        }
    }
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        TreeNode* prev;
    
        bool isValidBST(TreeNode* root) {
            prev = nullptr;
            return dfs(root);
        }
    
        bool dfs(TreeNode* root) {
            if (!root) return true;
            if (!dfs(root->left)) return false;
            if (prev && prev->val >= root->val) return false;
            prev = root;
            if (!dfs(root->right)) return false;
            return true;
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    
    
    class Solution: # recursive
        def isValidBST(self, root: Optional[TreeNode]) -> bool:
            def dfs(root, mi, ma):
                if not root:
                    return True
                return mi < root.val < ma and dfs(root.left, mi, root.val) and dfs(root.right, root.val, ma)
            return dfs(root, -math.inf, math.inf)
    
    
    class Solution: # iterative
        def isValidBST(self, root: TreeNode) -> bool:
            # store (node, lower, upper) tuples in a single queue
            queue = [(root, None, None)]
    
            # another option:
            # queue = [(root, -math.inf, math.inf)]
    
            while queue:
                node, lower, upper = queue.pop(0)
    
                if node is None:
                    continue
    
                val = node.val
                if lower is not None and val <= lower:
                    return False
                if upper is not None and val >= upper:
                    return False
    
                queue.append((node.right, val, upper))
                queue.append((node.left, lower, val))
    
            return True
    
    ############
    
    class Solution:
      def isValidBST(self, root: Optional[TreeNode]) -> bool:
        def isValidBST(root: Optional[TreeNode],
                       minNode: Optional[TreeNode], maxNode: Optional[TreeNode]) -> bool:
          if not root:
            return True
          if minNode and root.val <= minNode.val:
            return False
          if maxNode and root.val >= maxNode.val:
            return False
    
          return isValidBST(root.left, minNode, root) and isValidBST(root.right, root, maxNode)
    
        return isValidBST(root, None, None)
    
    ############
    
    # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def isValidBST(self, root: TreeNode) -> bool:
            def dfs(root):
                nonlocal prev
                if root is None:
                    return True
                if not dfs(root.left):
                    return False
                if prev >= root.val:
                    return False
                prev = root.val
                if not dfs(root.right):
                    return False
                return True
    
            prev = -inf
            return dfs(root)
    
    ############
    
    # Definition for a binary tree node.
    # class TreeNode(object):
    #     def __init__(self, x):
    #         self.val = x
    #         self.left = None
    #         self.right = None
    
    class Solution(object):
      def isValidBST(self, root):
        """
        :type root: TreeNode
        :rtype: bool
        """
        prev = -float("inf")
        stack = [(1, root)]
        while stack:
          p = stack.pop()
          if not p[1]:
            continue
          if p[0] == 0:
            if p[1].val <= prev:
              return False
            prev = p[1].val
          else:
            stack.append((1, p[1].right))
            stack.append((0, p[1]))
            stack.append((1, p[1].left))
        return True
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func isValidBST(root *TreeNode) bool {
    	var prev *TreeNode
    
    	var dfs func(root *TreeNode) bool
    	dfs = func(root *TreeNode) bool {
    		if root == nil {
    			return true
    		}
    		if !dfs(root.Left) {
    			return false
    		}
    		if prev != nil && prev.Val >= root.Val {
    			return false
    		}
    		prev = root
    		if !dfs(root.Right) {
    			return false
    		}
    		return true
    	}
    
    	return dfs(root)
    }
    
  • /**
     * Definition for a binary tree node.
     * function TreeNode(val, left, right) {
     *     this.val = (val===undefined ? 0 : val)
     *     this.left = (left===undefined ? null : left)
     *     this.right = (right===undefined ? null : right)
     * }
     */
    /**
     * @param {TreeNode} root
     * @return {boolean}
     */
    var isValidBST = function (root) {
        let prev = null;
    
        let dfs = function (root) {
            if (!root) {
                return true;
            }
            if (!dfs(root.left)) {
                return false;
            }
            if (prev && prev.val >= root.val) {
                return false;
            }
            prev = root;
            if (!dfs(root.right)) {
                return false;
            }
            return true;
        };
    
        return dfs(root);
    };
    
    
  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     public int val;
     *     public TreeNode left;
     *     public TreeNode right;
     *     public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    public class Solution {
        private TreeNode prev;
    
        public bool IsValidBST(TreeNode root) {
            prev = null;
            return dfs(root);
        }
    
        private bool dfs(TreeNode root) {
            if (root == null)
            {
                return true;
            }
            if (!dfs(root.left))
            {
                return false;
            }
            if (prev != null && prev.val >= root.val)
            {
                return false;
            }
            prev = root;
            if (!dfs(root.right))
            {
                return false;
            }
            return true;
        }
    }
    
  • /**
     * Definition for a binary tree node.
     * class TreeNode {
     *     val: number
     *     left: TreeNode | null
     *     right: TreeNode | null
     *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
     *         this.val = (val===undefined ? 0 : val)
     *         this.left = (left===undefined ? null : left)
     *         this.right = (right===undefined ? null : right)
     *     }
     * }
     */
    
    function isValidBST(root: TreeNode | null): boolean {
        let prev: TreeNode | null = null;
        const dfs = (root: TreeNode | null): boolean => {
            if (!root) {
                return true;
            }
            if (!dfs(root.left)) {
                return false;
            }
            if (prev && prev.val >= root.val) {
                return false;
            }
            prev = root;
            return dfs(root.right);
        };
        return dfs(root);
    }
    
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    use std::rc::Rc;
    use std::cell::RefCell;
    impl Solution {
        fn dfs(root: &Option<Rc<RefCell<TreeNode>>>, prev: &mut Option<i32>) -> bool {
            if root.is_none() {
                return true;
            }
            let root = root.as_ref().unwrap().borrow();
            if !Self::dfs(&root.left, prev) {
                return false;
            }
            if prev.is_some() && prev.unwrap() >= root.val {
                return false;
            }
            *prev = Some(root.val);
            Self::dfs(&root.right, prev)
        }
    
        pub fn is_valid_bst(root: Option<Rc<RefCell<TreeNode>>>) -> bool {
            Self::dfs(&root, &mut None)
        }
    }
    
    

All Problems

All Solutions