Welcome to Subscribe On Youtube

95. Unique Binary Search Trees II

Description

Given an integer n, return all the structurally unique BST's (binary search trees), which has exactly n nodes of unique values from 1 to n. Return the answer in any order.

 

Example 1:

Input: n = 3
Output: [[1,null,2,null,3],[1,null,3,2],[2,1,3],[3,1,null,null,2],[3,2,null,1]]

Example 2:

Input: n = 1
Output: [[1]]

 

Constraints:

  • 1 <= n <= 8

Solutions

Solution 1: DFS (Depth-First Search)

We design a function $dfs(i, j)$ that returns all feasible binary search trees composed of $[i, j]$, so the answer is $dfs(1, n)$.

The execution steps of the function $dfs(i, j)$ are as follows:

  1. If $i > j$, it means that there are no numbers to form a binary search tree at this time, so return a list consisting of a null node.
  2. If $i \leq j$, we enumerate the numbers $v$ in $[i, j]$ as the root node. The left subtree of the root node $v$ is composed of $[i, v - 1]$, and the right subtree is composed of $[v + 1, j]$. Finally, we take the Cartesian product of all combinations of the left and right subtrees, i.e., $left \times right$, add the root node $v$, and get all binary search trees with $v$ as the root node.

The time complexity is $O(n \times G(n))$, and the space complexity is $O(n \times G(n))$. Where $G(n)$ is the Catalan number.

  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public List<TreeNode> generateTrees(int n) {
            return dfs(1, n);
        }
    
        private List<TreeNode> dfs(int i, int j) {
            List<TreeNode> ans = new ArrayList<>();
            if (i > j) {
                ans.add(null);
                return ans;
            }
            for (int v = i; v <= j; ++v) {
                var left = dfs(i, v - 1);
                var right = dfs(v + 1, j);
                for (var l : left) {
                    for (var r : right) {
                        ans.add(new TreeNode(v, l, r));
                    }
                }
            }
            return ans;
        }
    }
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        vector<TreeNode*> generateTrees(int n) {
            function<vector<TreeNode*>(int, int)> dfs = [&](int i, int j) {
                if (i > j) {
                    return vector<TreeNode*>{nullptr};
                }
                vector<TreeNode*> ans;
                for (int v = i; v <= j; ++v) {
                    auto left = dfs(i, v - 1);
                    auto right = dfs(v + 1, j);
                    for (auto l : left) {
                        for (auto r : right) {
                            ans.push_back(new TreeNode(v, l, r));
                        }
                    }
                }
                return ans;
            };
            return dfs(1, n);
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def generateTrees(self, n: int) -> List[TreeNode]:
            def gen(left, right):
                ans = []
                # this if check instead of if left==right then return Node(left), less hassle
                if left > right:
                    ans.append(None)
                else:
                    # right+1, to cover case when left==right
                    for i in range(left, right + 1):
                        left_trees = gen(left, i - 1)
                        right_trees = gen(i + 1, right)
                        for l in left_trees:
                            for r in right_trees:
                                node = TreeNode(i, l, r)
                                ans.append(node)
                return ans
    
            return gen(1, n) # n or right is inclusive
    
    ############
    
    # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def generateTrees(self, n: int) -> List[Optional[TreeNode]]:
            def dfs(i: int, j: int) -> List[Optional[TreeNode]]:
                if i > j:
                    return [None]
                ans = []
                for v in range(i, j + 1):
                    left = dfs(i, v - 1)
                    right = dfs(v + 1, j)
                    for l in left:
                        for r in right:
                            ans.append(TreeNode(v, l, r))
                return ans
    
            return dfs(1, n)
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func generateTrees(n int) []*TreeNode {
    	var dfs func(int, int) []*TreeNode
    	dfs = func(i, j int) []*TreeNode {
    		if i > j {
    			return []*TreeNode{nil}
    		}
    		ans := []*TreeNode{}
    		for v := i; v <= j; v++ {
    			left := dfs(i, v-1)
    			right := dfs(v+1, j)
    			for _, l := range left {
    				for _, r := range right {
    					ans = append(ans, &TreeNode{v, l, r})
    				}
    			}
    		}
    		return ans
    	}
    	return dfs(1, n)
    }
    
  • /**
     * Definition for a binary tree node.
     * class TreeNode {
     *     val: number
     *     left: TreeNode | null
     *     right: TreeNode | null
     *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
     *         this.val = (val===undefined ? 0 : val)
     *         this.left = (left===undefined ? null : left)
     *         this.right = (right===undefined ? null : right)
     *     }
     * }
     */
    
    function generateTrees(n: number): Array<TreeNode | null> {
        const dfs = (i: number, j: number): Array<TreeNode | null> => {
            if (i > j) {
                return [null];
            }
            const ans: Array<TreeNode | null> = [];
            for (let v = i; v <= j; ++v) {
                const left = dfs(i, v - 1);
                const right = dfs(v + 1, j);
                for (const l of left) {
                    for (const r of right) {
                        ans.push(new TreeNode(v, l, r));
                    }
                }
            }
            return ans;
        };
        return dfs(1, n);
    }
    
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    use std::rc::Rc;
    use std::cell::RefCell;
    impl Solution {
        pub fn generate_trees(n: i32) -> Vec<Option<Rc<RefCell<TreeNode>>>> {
            Self::dfs(1, n)
        }
    
        fn dfs(i: i32, j: i32) -> Vec<Option<Rc<RefCell<TreeNode>>>> {
            let mut ans = Vec::new();
            if i > j {
                ans.push(None);
                return ans;
            }
            for v in i..=j {
                let left = Self::dfs(i, v - 1);
                let right = Self::dfs(v + 1, j);
                for l in &left {
                    for r in &right {
                        ans.push(
                            Some(
                                Rc::new(
                                    RefCell::new(TreeNode {
                                        val: v,
                                        left: l.clone(),
                                        right: r.clone(),
                                    })
                                )
                            )
                        );
                    }
                }
            }
            ans
        }
    }
    
    

All Problems

All Solutions