Welcome to Subscribe On Youtube
94. Binary Tree Inorder Traversal
Description
Given the root
of a binary tree, return the inorder traversal of its nodes' values.
Example 1:
Input: root = [1,null,2,3] Output: [1,3,2]
Example 2:
Input: root = [] Output: []
Example 3:
Input: root = [1] Output: [1]
Constraints:
- The number of nodes in the tree is in the range
[0, 100]
. -100 <= Node.val <= 100
Follow up: Recursive solution is trivial, could you do it iteratively?
Solutions
Solution 1: Recursive Traversal
We first recursively traverse the left subtree, then visit the root node, and finally recursively traverse the right subtree.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree, and the space complexity mainly depends on the stack space of the recursive call.
Solution 2: Stack Implementation for Non-recursive Traversal
The non-recursive approach is as follows:
- Define a stack
stk
. - Push the left nodes of the tree into the stack in sequence.
- When the left node is null, pop and process the top element of the stack.
- Repeat steps 2-3.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree, and the space complexity mainly depends on the stack space.
Solution 3: Morris Implementation for In-order Traversal
Morris traversal does not require a stack, so the space complexity is $O(1)$. The core idea is:
Traverse the binary tree nodes,
- If the left subtree of the current node
root
is null, add the current node value to the result listans
, and update the current node toroot.right
. - If the left subtree of the current node
root
is not null, find the rightmost nodeprev
of the left subtree (which is the predecessor node of theroot
node in in-order traversal):- If the right subtree of the predecessor node
prev
is null, point the right subtree of the predecessor node to the current noderoot
, and update the current node toroot.left
. - If the right subtree of the predecessor node
prev
is not null, add the current node value to the result listans
, then point the right subtree of the predecessor node to null (i.e., disconnectprev
androot
), and update the current node toroot.right
.
- If the right subtree of the predecessor node
- Repeat the above steps until the binary tree node is null, and the traversal ends.
The time complexity is $O(n)$, and the space complexity is $O(1)$. Here, $n$ is the number of nodes in the binary tree.
-
import java.util.ArrayList; import java.util.HashSet; import java.util.List; import java.util.Stack; public class Binary_Tree_Inorder_Traversal { /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution_optmize { public List<Integer> inorderTraversal(TreeNode root) { List<Integer> list = new ArrayList<Integer>(); if (root == null) { return list; } Stack<TreeNode> sk = new Stack<>(); TreeNode current = root; while (!sk.isEmpty() || current != null) { while (current != null) { sk.push(current); current = current.left; } // @note: 一逼撸到最左边 // @note: 没有push left的操作,就不会无限循环,也不需要mark是否visited TreeNode leftOrMiddle = sk.pop(); list.add(leftOrMiddle.val); current = leftOrMiddle.right; // if right is null here, next time pop parent node } return list; } } class Solution_noStack { // but modifying original tree public List<Integer> inorderTraversal(TreeNode root) { List<Integer> result = new ArrayList<>(); TreeNode current = root; TreeNode prev; while (current != null) { if (current.left == null) { result.add(current.val); // only handle right child current = current.right; // move to next right node } else { // has a left subtree prev = current.left; while (prev.right != null) { // find rightmost prev = prev.right; } prev.right = current; // put cur after the pre node TreeNode temp = current; // store cur node current = current.left; // move cur to the top of the new tree temp.left = null; // original cur left be null, avoid infinite loops } } return result; } } public class Solution { List<Integer> list = new ArrayList<Integer>(); public List<Integer> inorderTraversal(TreeNode root) { // mark if a node is visited already: true is visited. or, just use a Set HashSet<TreeNode> hs = new HashSet<>(); Stack<TreeNode> sk = new Stack<>(); sk.push(root); while (!sk.isEmpty()) { TreeNode current = sk.pop(); if (current == null) { continue; } // @note: careful to check left visited, or else infinite looping if (current.left != null && !hs.contains(current.left)) { sk.push(current); sk.push(current.left); } else { if (current.right != null && !hs.contains(current.right)) { sk.push(current.right); } hs.add(current); list.add(current.val); } } return list; } } class Solution_recursion { List<Integer> result = new ArrayList<>(); public List<Integer> inorderTraversal(TreeNode root) { dfs(root); return result; } public void dfs(TreeNode root) { if (root == null) { return; } dfs(root.left); result.add(root.val); dfs(root.right); } } } ////// /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public List<Integer> inorderTraversal(TreeNode root) { List<Integer> ans = new ArrayList<>(); while (root != null) { if (root.left == null) { ans.add(root.val); root = root.right; } else { TreeNode prev = root.left; while (prev.right != null && prev.right != root) { prev = prev.right; } if (prev.right == null) { prev.right = root; root = root.left; } else { ans.add(root.val); prev.right = null; root = root.right; } } } return ans; } }
-
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: vector<int> inorderTraversal(TreeNode* root) { vector<int> ans; while (root) { if (!root->left) { ans.push_back(root->val); root = root->right; } else { TreeNode* prev = root->left; while (prev->right && prev->right != root) { prev = prev->right; } if (!prev->right) { prev->right = root; root = root->left; } else { ans.push_back(root->val); prev->right = nullptr; root = root->right; } } } return ans; } };
-
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]: stack = [] current = root res = [] while stack or current: while current: stack.append(current) current = current.left left_or_middle = stack.pop() res.append(left_or_middle.val) current = left_or_middle.right return res # no stack, but modifying original tree class Solution: def inorderTraversal(self, root): result = [] current = root prev = None while current: if current.left is None: result.append(current.val) current = current.right else: prev = current.left while prev.right: prev = prev.right prev.right = current temp = current current = current.left temp.left = None return result class Solution: def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]: ans = [] while root: if root.left is None: ans.append(root.val) root = root.right else: prev = root.left while prev.right and prev.right != root: prev = prev.right if prev.right is None: prev.right = root root = root.left else: ans.append(root.val) prev.right = None root = root.right return ans ########### # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None ''' >>> stack = [(1, None)] >>> stack.extend([(0, None), (2, "b"), (3, "c")]) >>> stack [(1, None), (0, None), (2, 'b'), (3, 'c')] ''' class Solution(object): def inorderTraversal(self, root): """ :type root: TreeNode :rtype: List[int] """ # stack to hold tuple (), '0' meaning a parent node for current level, '1' meaning a child node res, stack = [], [(1, root)] while stack: p = stack.pop() if not p[1]: continue stack.extend([(1, p[1].right), (0, p[1]), (1, p[1].left)]) if p[0] != 0 else res.append(p[1].val) return res
-
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func inorderTraversal(root *TreeNode) []int { var ans []int for root != nil { if root.Left == nil { ans = append(ans, root.Val) root = root.Right } else { prev := root.Left for prev.Right != nil && prev.Right != root { prev = prev.Right } if prev.Right == nil { prev.Right = root root = root.Left } else { ans = append(ans, root.Val) prev.Right = nil root = root.Right } } } return ans }
-
/** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ function inorderTraversal(root: TreeNode | null): number[] { if (root == null) { return []; } return [...inorderTraversal(root.left), root.val, ...inorderTraversal(root.right)]; }
-
/** * Definition for a binary tree node. * function TreeNode(val, left, right) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } */ /** * @param {TreeNode} root * @return {number[]} */ var inorderTraversal = function (root) { let ans = []; while (root) { if (!root.left) { ans.push(root.val); root = root.right; } else { let prev = root.left; while (prev.right && prev.right != root) { prev = prev.right; } if (!prev.right) { prev.right = root; root = root.left; } else { ans.push(root.val); prev.right = null; root = root.right; } } } return ans; };
-
// Definition for a binary tree node. // #[derive(Debug, PartialEq, Eq)] // pub struct TreeNode { // pub val: i32, // pub left: Option<Rc<RefCell<TreeNode>>>, // pub right: Option<Rc<RefCell<TreeNode>>>, // } // // impl TreeNode { // #[inline] // pub fn new(val: i32) -> Self { // TreeNode { // val, // left: None, // right: None // } // } // } use std::rc::Rc; use std::cell::RefCell; impl Solution { fn dfs(root: &Option<Rc<RefCell<TreeNode>>>, res: &mut Vec<i32>) { if root.is_none() { return; } let node = root.as_ref().unwrap().borrow(); Self::dfs(&node.left, res); res.push(node.val); Self::dfs(&node.right, res); } pub fn inorder_traversal(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<i32> { let mut res = vec![]; Self::dfs(&root, &mut res); res } }