Welcome to Subscribe On Youtube

63. Unique Paths II

Description

You are given an m x n integer array grid. There is a robot initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]). The robot can only move either down or right at any point in time.

An obstacle and space are marked as 1 or 0 respectively in grid. A path that the robot takes cannot include any square that is an obstacle.

Return the number of possible unique paths that the robot can take to reach the bottom-right corner.

The testcases are generated so that the answer will be less than or equal to 2 * 109.

 

Example 1:

Input: obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
Output: 2
Explanation: There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right

Example 2:

Input: obstacleGrid = [[0,1],[0,0]]
Output: 1

 

Constraints:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j] is 0 or 1.

Solutions

Solution 1: Dynamic Programming

We define $dp[i][j]$ to represent the number of paths to reach the grid $(i,j)$.

First, initialize all values in the first column and first row of $dp$, then traverse other rows and columns, there are two cases:

  • If $obstacleGrid[i][j] = 1$, it means the number of paths is $0$, so $dp[i][j] = 0$;
  • If $obstacleGrid[i][j] = 0$, then $dp[i][j] = dp[i - 1][j] + dp[i][j - 1]$.

Finally, return $dp[m - 1][n - 1]$.

The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the number of rows and columns of the grid, respectively.

  • class Solution {
        public int uniquePathsWithObstacles(int[][] obstacleGrid) {
            int m = obstacleGrid.length, n = obstacleGrid[0].length;
            int[][] dp = new int[m][n];
            for (int i = 0; i < m && obstacleGrid[i][0] == 0; ++i) {
                dp[i][0] = 1;
            }
            for (int j = 0; j < n && obstacleGrid[0][j] == 0; ++j) {
                dp[0][j] = 1;
            }
            for (int i = 1; i < m; ++i) {
                for (int j = 1; j < n; ++j) {
                    if (obstacleGrid[i][j] == 0) {
                        dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
                    }
                }
            }
            return dp[m - 1][n - 1];
        }
    }
    
  • class Solution {
    public:
        int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
            int m = obstacleGrid.size(), n = obstacleGrid[0].size();
            vector<vector<int>> dp(m, vector<int>(n));
            for (int i = 0; i < m && obstacleGrid[i][0] == 0; ++i) {
                dp[i][0] = 1;
            }
            for (int j = 0; j < n && obstacleGrid[0][j] == 0; ++j) {
                dp[0][j] = 1;
            }
            for (int i = 1; i < m; ++i) {
                for (int j = 1; j < n; ++j) {
                    if (obstacleGrid[i][j] == 0) {
                        dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
                    }
                }
            }
            return dp[m - 1][n - 1];
        }
    };
    
  • class Solution:
        def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
            if not obstacleGrid:
                return 0
    
            m, n = len(obstacleGrid), len(obstacleGrid[0])
            dp = [[0] * (n+1) for _ in range(m+1)]
    
            # dp[1][1] = dp[0][1] + dp[1][0]
            # so, set either dp[0][1]=1, or set dp[1][0]=1
            dp[0][1] = 1
    
            for i in range(1, m+1):
                for j in range(1, n+1):
                    if obstacleGrid[i-1][j-1] == 0:
                        dp[i][j] = dp[i-1][j] + dp[i][j-1]
                    # else, ==1, obstacle, skip and leave as 0
    
            return dp[m][n]
    
    ############
    
    class Solution:
        def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
            m, n = len(obstacleGrid), len(obstacleGrid[0])
            dp = [[0] * n for _ in range(m)]
            for i in range(m):
                if obstacleGrid[i][0] == 1:
                    break
                dp[i][0] = 1
            for j in range(n):
                if obstacleGrid[0][j] == 1:
                    break
                dp[0][j] = 1
            for i in range(1, m):
                for j in range(1, n):
                    if obstacleGrid[i][j] == 0:
                        dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
            return dp[-1][-1]
    
    
  • func uniquePathsWithObstacles(obstacleGrid [][]int) int {
    	m, n := len(obstacleGrid), len(obstacleGrid[0])
    	dp := make([][]int, m)
    	for i := 0; i < m; i++ {
    		dp[i] = make([]int, n)
    	}
    	for i := 0; i < m && obstacleGrid[i][0] == 0; i++ {
    		dp[i][0] = 1
    	}
    	for j := 0; j < n && obstacleGrid[0][j] == 0; j++ {
    		dp[0][j] = 1
    	}
    	for i := 1; i < m; i++ {
    		for j := 1; j < n; j++ {
    			if obstacleGrid[i][j] == 0 {
    				dp[i][j] = dp[i-1][j] + dp[i][j-1]
    			}
    		}
    	}
    	return dp[m-1][n-1]
    }
    
  • function uniquePathsWithObstacles(obstacleGrid: number[][]): number {
        const m = obstacleGrid.length;
        const n = obstacleGrid[0].length;
        const dp = Array.from({ length: m }, () => new Array(n).fill(0));
        for (let i = 0; i < m; i++) {
            if (obstacleGrid[i][0] === 1) {
                break;
            }
            dp[i][0] = 1;
        }
        for (let i = 0; i < n; i++) {
            if (obstacleGrid[0][i] === 1) {
                break;
            }
            dp[0][i] = 1;
        }
        for (let i = 1; i < m; i++) {
            for (let j = 1; j < n; j++) {
                if (obstacleGrid[i][j] === 1) {
                    continue;
                }
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }
    
    
  • impl Solution {
        pub fn unique_paths_with_obstacles(obstacle_grid: Vec<Vec<i32>>) -> i32 {
            let m = obstacle_grid.len();
            let n = obstacle_grid[0].len();
            if obstacle_grid[0][0] == 1 || obstacle_grid[m - 1][n - 1] == 1 {
                return 0;
            }
            let mut dp = vec![vec![0; n]; m];
            for i in 0..n {
                if obstacle_grid[0][i] == 1 {
                    break;
                }
                dp[0][i] = 1;
            }
            for i in 0..m {
                if obstacle_grid[i][0] == 1 {
                    break;
                }
                dp[i][0] = 1;
            }
            for i in 1..m {
                for j in 1..n {
                    if obstacle_grid[i][j] == 1 {
                        continue;
                    }
                    dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
                }
            }
            dp[m - 1][n - 1]
        }
    }
    
    

All Problems

All Solutions