Leetcode Solutions Java Python C++ Problems
All contents and pictures on this website come from the Internet and are updated regularly every week. They are for personal study and research only, and should not be used for commercial purposes. Thank you for your cooperation.
Welcome to Subscribe On Youtube:

1681. Minimum Incompatibility

You are given an integer array nums​​​ and an integer k. You are asked to distribute this array into k subsets of equal size such that there are no two equal elements in the same subset.

A subset's incompatibility is the difference between the maximum and minimum elements in that array.

Return the minimum possible sum of incompatibilities of the k subsets after distributing the array optimally, or return -1 if it is not possible.

A subset is a group integers that appear in the array with no particular order.

 

Example 1:

Input: nums = [1,2,1,4], k = 2
Output: 4
Explanation: The optimal distribution of subsets is [1,2] and [1,4].
The incompatibility is (2-1) + (4-1) = 4.
Note that [1,1] and [2,4] would result in a smaller sum, but the first subset contains 2 equal elements.

Example 2:

Input: nums = [6,3,8,1,3,1,2,2], k = 4
Output: 6
Explanation: The optimal distribution of subsets is [1,2], [2,3], [6,8], and [1,3].
The incompatibility is (2-1) + (3-2) + (8-6) + (3-1) = 6.

Example 3:

Input: nums = [5,3,3,6,3,3], k = 3
Output: -1
Explanation: It is impossible to distribute nums into 3 subsets where no two elements are equal in the same subset.

 

Constraints:

  • 1 <= k <= nums.length <= 16
  • nums.length is divisible by k
  • 1 <= nums[i] <= nums.length

Difficulty:

Hard

Lock:

Normal

Company:

Microsoft

Problem Solution

1681-Minimum-Incompatibility

All Problems:

Link to All Problems
All contents and pictures on this website come from the Internet and are updated regularly every week. They are for personal study and research only, and should not be used for commercial purposes. Thank you for your cooperation.