Given the root
of a binary tree and an array of TreeNode
objects nodes
, return the lowest common ancestor (LCA) of all
the nodes in nodes
. All the nodes will exist in the tree,
and all values of the tree's nodes are unique.
Extending the definition of LCA on Wikipedia:
"The lowest common ancestor of n
nodes p1
,
p2
, ..., pn
in a binary tree
T
is the lowest node that has every pi
as a
descendant (where we allow a node to be a descendant of
itself) for every valid i
". A descendant of a
node x
is a node y
that is on the path from node
x
to some leaf node.
Example 1:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], nodes = [4,7] Output: 2 Explanation: The lowest common ancestor of nodes 4 and 7 is node 2.
Example 2:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], nodes = [1] Output: 1 Explanation: The lowest common ancestor of a single node is the node itself.
Example 3:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], nodes = [7,6,2,4] Output: 5 Explanation: The lowest common ancestor of the nodes 7, 6, 2, and 4 is node 5.
Example 4:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], nodes = [0,1,2,3,4,5,6,7,8] Output: 3 Explanation: The lowest common ancestor of all the nodes is the root node.
Constraints:
[1, 104]
.
-109 <= Node.val <= 109
Node.val
are unique.nodes[i]
will exist in the tree.nodes[i]
are distinct.