Given n
points on a 1-D plane, where the ith
point (from 0
to n-1
) is at x = i
, find the
number of ways we can draw exactly k
non-overlapping
line segments such that each segment covers two or more points. The endpoints of each
segment must have integral coordinates. The k
line
segments do not have to cover all n
points, and they are
allowed to share endpoints.
Return the number of ways we can draw k
non-overlapping
line segments. Since this number can be huge, return it modulo
109 + 7
.
Example 1:
Input: n = 4, k = 2 Output: 5 Explanation: The two line segments are shown in red and blue. The image above shows the 5 different ways {(0,2),(2,3)}, {(0,1),(1,3)}, {(0,1),(2,3)}, {(1,2),(2,3)}, {(0,1),(1,2)}.
Example 2:
Input: n = 3, k = 1 Output: 3 Explanation: The 3 ways are {(0,1)}, {(0,2)}, {(1,2)}.
Example 3:
Input: n = 30, k = 7 Output: 796297179 Explanation: The total number of possible ways to draw 7 line segments is 3796297200. Taking this number modulo 109 + 7 gives us 796297179.
Example 4:
Input: n = 5, k = 3 Output: 7
Example 5:
Input: n = 3, k = 2 Output: 1
Constraints:
2 <= n <= 1000
1 <= k <= n-1