Welcome to Subscribe On Youtube

1621. Number of Sets of K Non-Overlapping Line Segments

Description

Given n points on a 1-D plane, where the ith point (from 0 to n-1) is at x = i, find the number of ways we can draw exactly k non-overlapping line segments such that each segment covers two or more points. The endpoints of each segment must have integral coordinates. The k line segments do not have to cover all n points, and they are allowed to share endpoints.

Return the number of ways we can draw k non-overlapping line segments. Since this number can be huge, return it modulo 109 + 7.

 

Example 1:

Input: n = 4, k = 2
Output: 5
Explanation: The two line segments are shown in red and blue.
The image above shows the 5 different ways {(0,2),(2,3)}, {(0,1),(1,3)}, {(0,1),(2,3)}, {(1,2),(2,3)}, {(0,1),(1,2)}.

Example 2:

Input: n = 3, k = 1
Output: 3
Explanation: The 3 ways are {(0,1)}, {(0,2)}, {(1,2)}.

Example 3:

Input: n = 30, k = 7
Output: 796297179
Explanation: The total number of possible ways to draw 7 line segments is 3796297200. Taking this number modulo 109 + 7 gives us 796297179.

 

Constraints:

  • 2 <= n <= 1000
  • 1 <= k <= n-1

Solutions

  • class Solution {
        private static final int MOD = (int) 1e9 + 7;
    
        public int numberOfSets(int n, int k) {
            int[][] f = new int[n + 1][k + 1];
            int[][] g = new int[n + 1][k + 1];
            f[1][0] = 1;
            for (int i = 2; i <= n; ++i) {
                for (int j = 0; j <= k; ++j) {
                    f[i][j] = (f[i - 1][j] + g[i - 1][j]) % MOD;
                    g[i][j] = g[i - 1][j];
                    if (j > 0) {
                        g[i][j] += f[i - 1][j - 1];
                        g[i][j] %= MOD;
                        g[i][j] += g[i - 1][j - 1];
                        g[i][j] %= MOD;
                    }
                }
            }
            return (f[n][k] + g[n][k]) % MOD;
        }
    }
    
  • class Solution {
    public:
        int f[1010][1010];
        int g[1010][1010];
        const int mod = 1e9 + 7;
    
        int numberOfSets(int n, int k) {
            memset(f, 0, sizeof(f));
            memset(g, 0, sizeof(g));
            f[1][0] = 1;
            for (int i = 2; i <= n; ++i) {
                for (int j = 0; j <= k; ++j) {
                    f[i][j] = (f[i - 1][j] + g[i - 1][j]) % mod;
                    g[i][j] = g[i - 1][j];
                    if (j > 0) {
                        g[i][j] += f[i - 1][j - 1];
                        g[i][j] %= mod;
                        g[i][j] += g[i - 1][j - 1];
                        g[i][j] %= mod;
                    }
                }
            }
            return (f[n][k] + g[n][k]) % mod;
        }
    };
    
  • class Solution:
        def numberOfSets(self, n: int, k: int) -> int:
            mod = 10**9 + 7
            f = [[0] * (k + 1) for _ in range(n + 1)]
            g = [[0] * (k + 1) for _ in range(n + 1)]
            f[1][0] = 1
            for i in range(2, n + 1):
                for j in range(k + 1):
                    f[i][j] = (f[i - 1][j] + g[i - 1][j]) % mod
                    g[i][j] = g[i - 1][j]
                    if j:
                        g[i][j] += f[i - 1][j - 1]
                        g[i][j] %= mod
                        g[i][j] += g[i - 1][j - 1]
                        g[i][j] %= mod
            return (f[-1][-1] + g[-1][-1]) % mod
    
    
  • func numberOfSets(n int, k int) int {
    	f := make([][]int, n+1)
    	g := make([][]int, n+1)
    	for i := range f {
    		f[i] = make([]int, k+1)
    		g[i] = make([]int, k+1)
    	}
    	f[1][0] = 1
    	var mod int = 1e9 + 7
    	for i := 2; i <= n; i++ {
    		for j := 0; j <= k; j++ {
    			f[i][j] = (f[i-1][j] + g[i-1][j]) % mod
    			g[i][j] = g[i-1][j]
    			if j > 0 {
    				g[i][j] += f[i-1][j-1]
    				g[i][j] %= mod
    				g[i][j] += g[i-1][j-1]
    				g[i][j] %= mod
    			}
    		}
    	}
    	return (f[n][k] + g[n][k]) % mod
    }
    
  • function numberOfSets(n: number, k: number): number {
        const f = Array.from({ length: n + 1 }, _ => new Array(k + 1).fill(0));
        const g = Array.from({ length: n + 1 }, _ => new Array(k + 1).fill(0));
        f[1][0] = 1;
        const mod = 10 ** 9 + 7;
        for (let i = 2; i <= n; ++i) {
            for (let j = 0; j <= k; ++j) {
                f[i][j] = (f[i - 1][j] + g[i - 1][j]) % mod;
                g[i][j] = g[i - 1][j];
                if (j) {
                    g[i][j] += f[i - 1][j - 1];
                    g[i][j] %= mod;
                    g[i][j] += g[i - 1][j - 1];
                    g[i][j] %= mod;
                }
            }
        }
        return (f[n][k] + g[n][k]) % mod;
    }
    
    

All Problems

All Solutions