There is a one-dimensional garden on the x-axis. The garden starts at the point
0
and ends at the point n
. (i.e The length of the garden is
n
).
There are n + 1
taps located at points [0, 1, ...,
n]
in the garden.
Given an integer n
and an integer array ranges
of length
n + 1
where ranges[i]
(0-indexed) means the
i-th
tap can water the area [i - ranges[i], i + ranges[i]]
if it was open.
Return the minimum number of taps that should be open to water the whole garden, If the garden cannot be watered return -1.
Example 1:
Input: n = 5, ranges = [3,4,1,1,0,0] Output: 1 Explanation: The tap at point 0 can cover the interval [-3,3] The tap at point 1 can cover the interval [-3,5] The tap at point 2 can cover the interval [1,3] The tap at point 3 can cover the interval [2,4] The tap at point 4 can cover the interval [4,4] The tap at point 5 can cover the interval [5,5] Opening Only the second tap will water the whole garden [0,5]
Example 2:
Input: n = 3, ranges = [0,0,0,0] Output: -1 Explanation: Even if you activate all the four taps you cannot water the whole garden.
Example 3:
Input: n = 7, ranges = [1,2,1,0,2,1,0,1] Output: 3
Example 4:
Input: n = 8, ranges = [4,0,0,0,0,0,0,0,4] Output: 2
Example 5:
Input: n = 8, ranges = [4,0,0,0,4,0,0,0,4] Output: 1
Constraints:
1 <= n <= 10^4
ranges.length == n + 1
0 <= ranges[i] <= 100