Welcome to Subscribe On Youtube

3751. Total Waviness of Numbers in Range I

Description

You are given two integers num1 and num2 representing an inclusive range [num1, num2].

The waviness of a number is defined as the total count of its peaks and valleys:

  • A digit is a peak if it is strictly greater than both of its immediate neighbors.
  • A digit is a valley if it is strictly less than both of its immediate neighbors.
  • The first and last digits of a number cannot be peaks or valleys.
  • Any number with fewer than 3 digits has a waviness of 0.

Return the total sum of waviness for all numbers in the range [num1, num2].

 

Example 1:

Input: num1 = 120, num2 = 130

Output: 3

Explanation:

In the range [120, 130]:
  • 120: middle digit 2 is a peak, waviness = 1.
  • 121: middle digit 2 is a peak, waviness = 1.
  • 130: middle digit 3 is a peak, waviness = 1.
  • All other numbers in the range have a waviness of 0.

Thus, total waviness is 1 + 1 + 1 = 3.

Example 2:

Input: num1 = 198, num2 = 202

Output: 3

Explanation:

In the range [198, 202]:
  • 198: middle digit 9 is a peak, waviness = 1.
  • 201: middle digit 0 is a valley, waviness = 1.
  • 202: middle digit 0 is a valley, waviness = 1.
  • All other numbers in the range have a waviness of 0.

Thus, total waviness is 1 + 1 + 1 = 3.

Example 3:

Input: num1 = 4848, num2 = 4848

Output: 2

Explanation:

Number 4848: the second digit 8 is a peak, and the third digit 4 is a valley, giving a waviness of 2.

 

Constraints:

  • 1 <= num1 <= num2 <= 105

Solutions

Solution 1: Simulation

We define a helper function $f(x)$ to calculate the waviness value of integer $x$. In this function, we store each digit of integer $x$ in an array $\textit{nums}$. If the number has fewer than 3 digits, the waviness value is 0. Otherwise, we iterate through each non-leading and non-trailing digit in the array $\textit{nums}$, determine whether it is a peak or valley, and count the waviness value.

Then, we iterate through each integer $x$ in the range $[\textit{num1}, \textit{num2}]$ and accumulate its waviness value $f(x)$ to obtain the final result.

The time complexity is $O((\textit{num2} - \textit{num1} + 1) \cdot \log \textit{num2})$ and the space complexity is $O(\log \textit{num2})$.

  • class Solution {
        public int totalWaviness(int num1, int num2) {
            int ans = 0;
            for (int x = num1; x <= num2; x++) {
                ans += f(x);
            }
            return ans;
        }
    
        private int f(int x) {
            int[] nums = new int[20];
            int m = 0;
            while (x > 0) {
                nums[m++] = x % 10;
                x /= 10;
            }
            if (m < 3) {
                return 0;
            }
            int s = 0;
            for (int i = 1; i < m - 1; i++) {
                if ((nums[i] > nums[i - 1] && nums[i] > nums[i + 1])
                    || (nums[i] < nums[i - 1] && nums[i] < nums[i + 1])) {
                    s++;
                }
            }
            return s;
        }
    }
    
    
  • class Solution {
    public:
        int totalWaviness(int num1, int num2) {
            int ans = 0;
            for (int x = num1; x <= num2; x++) {
                ans += f(x);
            }
            return ans;
        }
    
        int f(int x) {
            int nums[20], m = 0;
            while (x > 0) {
                nums[m++] = x % 10;
                x /= 10;
            }
            if (m < 3) {
                return 0;
            }
            int s = 0;
            for (int i = 1; i < m - 1; i++) {
                if ((nums[i] > nums[i - 1] && nums[i] > nums[i + 1]) || (nums[i] < nums[i - 1] && nums[i] < nums[i + 1])) {
                    s++;
                }
            }
            return s;
        }
    };
    
    
  • class Solution:
        def totalWaviness(self, num1: int, num2: int) -> int:
            def f(x: int) -> int:
                nums = []
                while x:
                    nums.append(x % 10)
                    x //= 10
                m = len(nums)
                if m < 3:
                    return 0
                s = 0
                for i in range(1, m - 1):
                    if nums[i] > nums[i - 1] and nums[i] > nums[i + 1]:
                        s += 1
                    elif nums[i] < nums[i - 1] and nums[i] < nums[i + 1]:
                        s += 1
                return s
    
            return sum(f(x) for x in range(num1, num2 + 1))
    
    
  • func totalWaviness(num1 int, num2 int) (ans int) {
    	for x := num1; x <= num2; x++ {
    		ans += f(x)
    	}
    	return
    }
    
    func f(x int) int {
    	nums := make([]int, 0, 20)
    	for x > 0 {
    		nums = append(nums, x%10)
    		x /= 10
    	}
    	m := len(nums)
    	if m < 3 {
    		return 0
    	}
    	s := 0
    	for i := 1; i < m-1; i++ {
    		if (nums[i] > nums[i-1] && nums[i] > nums[i+1]) ||
    			(nums[i] < nums[i-1] && nums[i] < nums[i+1]) {
    			s++
    		}
    	}
    	return s
    }
    
    
  • function totalWaviness(num1: number, num2: number): number {
        let ans = 0;
        for (let x = num1; x <= num2; x++) {
            ans += f(x);
        }
        return ans;
    }
    
    function f(x: number): number {
        const nums: number[] = [];
        while (x > 0) {
            nums.push(x % 10);
            x = Math.floor(x / 10);
        }
        const m = nums.length;
        if (m < 3) return 0;
    
        let s = 0;
        for (let i = 1; i < m - 1; i++) {
            if (
                (nums[i] > nums[i - 1] && nums[i] > nums[i + 1]) ||
                (nums[i] < nums[i - 1] && nums[i] < nums[i + 1])
            ) {
                s++;
            }
        }
        return s;
    }
    
    

All Problems

All Solutions