Welcome to Subscribe On Youtube
3741. Minimum Distance Between Three Equal Elements II
Description
You are given an integer array nums.
A tuple (i, j, k) of 3 distinct indices is good if nums[i] == nums[j] == nums[k].
The distance of a good tuple is abs(i - j) + abs(j - k) + abs(k - i), where abs(x) denotes the absolute value of x.
Return an integer denoting the minimum possible distance of a good tuple. If no good tuples exist, return -1.
Example 1:
Input: nums = [1,2,1,1,3]
Output: 6
Explanation:
The minimum distance is achieved by the good tuple (0, 2, 3).
(0, 2, 3) is a good tuple because nums[0] == nums[2] == nums[3] == 1. Its distance is abs(0 - 2) + abs(2 - 3) + abs(3 - 0) = 2 + 1 + 3 = 6.
Example 2:
Input: nums = [1,1,2,3,2,1,2]
Output: 8
Explanation:
The minimum distance is achieved by the good tuple (2, 4, 6).
(2, 4, 6) is a good tuple because nums[2] == nums[4] == nums[6] == 2. Its distance is abs(2 - 4) + abs(4 - 6) + abs(6 - 2) = 2 + 2 + 4 = 8.
Example 3:
Input: nums = [1]
Output: -1
Explanation:
There are no good tuples. Therefore, the answer is -1.
Constraints:
1 <= n == nums.length <= 1051 <= nums[i] <= n
Solutions
Solution 1: Hash Table
We can use a hash table $\textit{g}$ to store the list of indices for each number in the array. While traversing the array, we add each number’s index to its corresponding list in the hash table. Define a variable $\textit{ans}$ to store the answer, with an initial value of infinity $\infty$.
Next, we iterate through each index list in the hash table. If the length of an index list for a particular number is greater than or equal to $3$, it means there exists a valid triplet. To minimize the distance, we can choose three consecutive indices $i$, $j$, and $k$ from that number’s index list, where $i < j < k$. The distance of this triplet is $j - i + k - j + k - i = 2 \times (k - i)$. We traverse all combinations of three consecutive indices in the list, calculate the distance, and update the answer.
Finally, if the answer is still the initial value $\infty$, it means no valid triplet exists, so we return $-1$; otherwise, we return the calculated minimum distance.
The time complexity is $O(n)$, and the space complexity is $O(n)$, where $n$ is the length of the array.
-
class Solution { public int minimumDistance(int[] nums) { int n = nums.length; Map<Integer, List<Integer>> g = new HashMap<>(); for (int i = 0; i < n; ++i) { g.computeIfAbsent(nums[i], k -> new ArrayList<>()).add(i); } final int inf = 1 << 30; int ans = inf; for (var ls : g.values()) { int m = ls.size(); for (int h = 0; h < m - 2; ++h) { int i = ls.get(h); int k = ls.get(h + 2); int t = (k - i) * 2; ans = Math.min(ans, t); } } return ans == inf ? -1 : ans; } } -
class Solution { public: int minimumDistance(vector<int>& nums) { int n = nums.size(); unordered_map<int, vector<int>> g; for (int i = 0; i < n; ++i) { g[nums[i]].push_back(i); } const int inf = 1 << 30; int ans = inf; for (auto& [_, ls] : g) { int m = ls.size(); for (int h = 0; h < m - 2; ++h) { int i = ls[h]; int k = ls[h + 2]; int t = (k - i) * 2; ans = min(ans, t); } } return ans == inf ? -1 : ans; } }; -
class Solution: def minimumDistance(self, nums: List[int]) -> int: g = defaultdict(list) for i, x in enumerate(nums): g[x].append(i) ans = inf for ls in g.values(): for h in range(len(ls) - 2): i, k = ls[h], ls[h + 2] ans = min(ans, (k - i) * 2) return -1 if ans == inf else ans -
func minimumDistance(nums []int) int { g := make(map[int][]int) for i, x := range nums { g[x] = append(g[x], i) } inf := 1 << 30 ans := inf for _, ls := range g { m := len(ls) for h := 0; h < m-2; h++ { i := ls[h] k := ls[h+2] t := (k - i) * 2 ans = min(ans, t) } } if ans == inf { return -1 } return ans } -
function minimumDistance(nums: number[]): number { const n = nums.length; const g = new Map<number, number[]>(); for (let i = 0; i < n; i++) { if (!g.has(nums[i])) { g.set(nums[i], []); } g.get(nums[i])!.push(i); } const inf = 1 << 30; let ans = inf; for (const ls of g.values()) { const m = ls.length; for (let h = 0; h < m - 2; h++) { const i = ls[h]; const k = ls[h + 2]; const t = (k - i) * 2; ans = Math.min(ans, t); } } return ans === inf ? -1 : ans; }