Welcome to Subscribe On Youtube
3729. Count Distinct Subarrays Divisible by K in Sorted Array
Description
You are given an integer array nums sorted in non-descending order and a positive integer k.
A subarray of nums is good if the sum of its elements is divisible by k.
Return an integer denoting the number of distinct good subarrays of nums.
Subarrays are distinct if their sequences of values are. For example, there are 3 distinct subarrays in [1, 1, 1], namely [1], [1, 1], and [1, 1, 1].
Example 1:
Input: nums = [1,2,3], k = 3
Output: 3
Explanation:
The good subarrays are [1, 2], [3], and [1, 2, 3]. For example, [1, 2, 3] is good because the sum of its elements is 1 + 2 + 3 = 6, and 6 % k = 6 % 3 = 0.
Example 2:
Input: nums = [2,2,2,2,2,2], k = 6
Output: 2
Explanation:
The good subarrays are [2, 2, 2] and [2, 2, 2, 2, 2, 2]. For example, [2, 2, 2] is good because the sum of its elements is 2 + 2 + 2 = 6, and 6 % k = 6 % 6 = 0.
Note that [2, 2, 2] is counted only once.
Constraints:
1 <= nums.length <= 1051 <= nums[i] <= 109numsis sorted in non-descending order.1 <= k <= 109
Solutions
Solution 1
-
class Solution { public long numGoodSubarrays(int[] nums, int k) { long ans = 0; int s = 0; Map<Integer, Integer> cnt = new HashMap<>(); cnt.put(0, 1); for (int x : nums) { s = (s + x) % k; ans += cnt.getOrDefault(s, 0); cnt.merge(s, 1, Integer::sum); } int n = nums.length; for (int i = 0; i < n;) { int j = i + 1; while (j < n && nums[j] == nums[i]) { ++j; } int m = j - i; for (int h = 1; h <= m; ++h) { if (1L * nums[i] * h % k == 0) { ans -= (m - h); } } i = j; } return ans; } } -
class Solution { public: long long numGoodSubarrays(vector<int>& nums, int k) { long long ans = 0; int s = 0; unordered_map<int, int> cnt; cnt[0] = 1; for (int x : nums) { s = (s + x) % k; ans += cnt[s]++; } int n = nums.size(); for (int i = 0; i < n;) { int j = i + 1; while (j < n && nums[j] == nums[i]) { ++j; } int m = j - i; for (int h = 1; h <= m; ++h) { if (1LL * nums[i] * h % k == 0) { ans -= (m - h); } } i = j; } return ans; } }; -
class Solution: def numGoodSubarrays(self, nums: List[int], k: int) -> int: cnt = Counter({0: 1}) ans = s = 0 for x in nums: s = (s + x) % k ans += cnt[s] cnt[s] += 1 n = len(nums) i = 0 while i < n: j = i + 1 while j < n and nums[j] == nums[i]: j += 1 m = j - i for h in range(1, m + 1): if (h * nums[i]) % k == 0: ans -= m - h i = j return ans -
func numGoodSubarrays(nums []int, k int) (ans int64) { s := 0 cnt := map[int]int{0: 1} for _, x := range nums { s = (s + x) % k ans += int64(cnt[s]) cnt[s]++ } n := len(nums) for i := 0; i < n; { j := i + 1 for j < n && nums[j] == nums[i] { j++ } m := j - i for h := 1; h <= m; h++ { if int64(nums[i])*int64(h)%int64(k) == 0 { ans -= int64(m - h) } } i = j } return } -
function numGoodSubarrays(nums: number[], k: number): number { let ans = 0; let s = 0; const cnt = new Map<number, number>(); cnt.set(0, 1); for (const x of nums) { s = (s + x) % k; ans += cnt.get(s) ?? 0; cnt.set(s, (cnt.get(s) ?? 0) + 1); } const n = nums.length; for (let i = 0; i < n; ) { let j = i + 1; while (j < n && nums[j] === nums[i]) ++j; const m = j - i; for (let h = 1; h <= m; ++h) { if ((nums[i] * h) % k === 0) { ans -= m - h; } } i = j; } return ans; }