Welcome to Subscribe On Youtube
3712. Sum of Elements With Frequency Divisible by K
Description
You are given an integer array nums and an integer k.
Return an integer denoting the sum of all elements in nums whose frequency is divisible by k, or 0 if there are no such elements.
Note: An element is included in the sum exactly as many times as it appears in the array if its total frequency is divisible by k.
Example 1:
Input: nums = [1,2,2,3,3,3,3,4], k = 2
Output: 16
Explanation:
- The number 1 appears once (odd frequency).
- The number 2 appears twice (even frequency).
- The number 3 appears four times (even frequency).
- The number 4 appears once (odd frequency).
So, the total sum is 2 + 2 + 3 + 3 + 3 + 3 = 16.
Example 2:
Input: nums = [1,2,3,4,5], k = 2
Output: 0
Explanation:
There are no elements that appear an even number of times, so the total sum is 0.
Example 3:
Input: nums = [4,4,4,1,2,3], k = 3
Output: 12
Explanation:
- The number 1 appears once.
- The number 2 appears once.
- The number 3 appears once.
- The number 4 appears three times.
So, the total sum is 4 + 4 + 4 = 12.
Constraints:
1 <= nums.length <= 1001 <= nums[i] <= 1001 <= k <= 100
Solutions
Solution 1: Counting
We use a hash table $\textit{cnt}$ to record the frequency of each number. We traverse the array $\textit{nums}$, and for each number $x$, we increment $\textit{cnt}[x]$ by $1$.
Then, we traverse the hash table $\textit{cnt}$. For each element $x$, if its frequency $\textit{cnt}[x]$ is divisible by $k$, we add $x$ multiplied by its frequency to the result.
The time complexity is $O(n)$, where $n$ is the length of the array. The space complexity is $O(m)$, where $m$ is the number of distinct elements in the array.
-
class Solution { public int sumDivisibleByK(int[] nums, int k) { Map<Integer, Integer> cnt = new HashMap<>(); for (int x : nums) { cnt.merge(x, 1, Integer::sum); } int ans = 0; for (var e : cnt.entrySet()) { int x = e.getKey(), v = e.getValue(); if (v % k == 0) { ans += x * v; } } return ans; } } -
class Solution { public: int sumDivisibleByK(vector<int>& nums, int k) { unordered_map<int, int> cnt; for (int x : nums) { ++cnt[x]; } int ans = 0; for (auto& [x, v] : cnt) { if (v % k == 0) { ans += x * v; } } return ans; } }; -
class Solution: def sumDivisibleByK(self, nums: List[int], k: int) -> int: cnt = Counter(nums) return sum(x * v for x, v in cnt.items() if v % k == 0) -
func sumDivisibleByK(nums []int, k int) (ans int) { cnt := map[int]int{} for _, x := range nums { cnt[x]++ } for x, v := range cnt { if v%k == 0 { ans += x * v } } return } -
function sumDivisibleByK(nums: number[], k: number): number { const cnt = new Map(); for (const x of nums) { cnt.set(x, (cnt.get(x) || 0) + 1); } let ans = 0; for (const [x, v] of cnt.entries()) { if (v % k === 0) { ans += x * v; } } return ans; }