Welcome to Subscribe On Youtube

3653. XOR After Range Multiplication Queries I

Description

You are given an integer array nums of length n and a 2D integer array queries of size q, where queries[i] = [li, ri, ki, vi].

For each query, you must apply the following operations in order:

  • Set idx = li.
  • While idx <= ri:
    • Update: nums[idx] = (nums[idx] * vi) % (109 + 7)
    • Set idx += ki.

Return the bitwise XOR of all elements in nums after processing all queries.

 

Example 1:

Input: nums = [1,1,1], queries = [[0,2,1,4]]

Output: 4

Explanation:

  • A single query [0, 2, 1, 4] multiplies every element from index 0 through index 2 by 4.
  • The array changes from [1, 1, 1] to [4, 4, 4].
  • The XOR of all elements is 4 ^ 4 ^ 4 = 4.

Example 2:

Input: nums = [2,3,1,5,4], queries = [[1,4,2,3],[0,2,1,2]]

Output: 31

Explanation:

  • The first query [1, 4, 2, 3] multiplies the elements at indices 1 and 3 by 3, transforming the array to [2, 9, 1, 15, 4].
  • The second query [0, 2, 1, 2] multiplies the elements at indices 0, 1, and 2 by 2, resulting in [4, 18, 2, 15, 4].
  • Finally, the XOR of all elements is 4 ^ 18 ^ 2 ^ 15 ^ 4 = 31.​​​​​​​​​​​​​​

 

Constraints:

  • 1 <= n == nums.length <= 103
  • 1 <= nums[i] <= 109
  • 1 <= q == queries.length <= 103
  • queries[i] = [li, ri, ki, vi]
  • 0 <= li <= ri < n
  • 1 <= ki <= n
  • 1 <= vi <= 105

Solutions

Solution 1

  • class Solution {
        public int xorAfterQueries(int[] nums, int[][] queries) {
            final int mod = (int) 1e9 + 7;
            for (var q : queries) {
                int l = q[0], r = q[1], k = q[2], v = q[3];
                for (int idx = l; idx <= r; idx += k) {
                    nums[idx] = (int) (1L * nums[idx] * v % mod);
                }
            }
            int ans = 0;
            for (int x : nums) {
                ans ^= x;
            }
            return ans;
        }
    }
    
    
  • class Solution {
    public:
        int xorAfterQueries(vector<int>& nums, vector<vector<int>>& queries) {
            const int mod = 1e9 + 7;
            for (const auto& q : queries) {
                int l = q[0], r = q[1], k = q[2], v = q[3];
                for (int idx = l; idx <= r; idx += k) {
                    nums[idx] = 1LL * nums[idx] * v % mod;
                }
            }
            int ans = 0;
            for (int x : nums) {
                ans ^= x;
            }
            return ans;
        }
    };
    
    
  • class Solution:
        def xorAfterQueries(self, nums: List[int], queries: List[List[int]]) -> int:
            mod = 10**9 + 7
            for l, r, k, v in queries:
                for idx in range(l, r + 1, k):
                    nums[idx] = nums[idx] * v % mod
            return reduce(xor, nums)
    
    
  • func xorAfterQueries(nums []int, queries [][]int) int {
    	const mod = int(1e9 + 7)
    	for _, q := range queries {
    		l, r, k, v := q[0], q[1], q[2], q[3]
    		for idx := l; idx <= r; idx += k {
    			nums[idx] = nums[idx] * v % mod
    		}
    	}
    	ans := 0
    	for _, x := range nums {
    		ans ^= x
    	}
    	return ans
    }
    
    
  • function xorAfterQueries(nums: number[], queries: number[][]): number {
        const mod = 1e9 + 7;
        for (const [l, r, k, v] of queries) {
            for (let idx = l; idx <= r; idx += k) {
                nums[idx] = (nums[idx] * v) % mod;
            }
        }
        return nums.reduce((acc, x) => acc ^ x, 0);
    }
    
    
  • impl Solution {
        pub fn xor_after_queries(mut nums: Vec<i32>, queries: Vec<Vec<i32>>) -> i32 {
            let modv: i64 = 1_000_000_007;
            for q in queries {
                let (l, r, k, v) = (q[0] as usize, q[1] as usize, q[2] as usize, q[3] as i64);
                let mut idx = l;
                while idx <= r {
                    nums[idx] = ((nums[idx] as i64 * v) % modv) as i32;
                    idx += k;
                }
            }
            let mut ans = 0;
            for x in nums {
                ans ^= x;
            }
            return ans;
        }
    }
    
    

All Problems

All Solutions