Welcome to Subscribe On Youtube
3607. Power Grid Maintenance
Description
You are given an integer c representing c power stations, each with a unique identifier id from 1 to c (1‑based indexing).
These stations are interconnected via n bidirectional cables, represented by a 2D array connections, where each element connections[i] = [ui, vi] indicates a connection between station ui and station vi. Stations that are directly or indirectly connected form a power grid.
Initially, all stations are online (operational).
You are also given a 2D array queries, where each query is one of the following two types:
-
[1, x]: A maintenance check is requested for stationx. If stationxis online, it resolves the check by itself. If stationxis offline, the check is resolved by the operational station with the smallestidin the same power grid asx. If no operational station exists in that grid, return -1. -
[2, x]: Stationxgoes offline (i.e., it becomes non-operational).
Return an array of integers representing the results of each query of type [1, x] in the order they appear.
Note: The power grid preserves its structure; an offline (non‑operational) node remains part of its grid and taking it offline does not alter connectivity.
Example 1:
Input: c = 5, connections = [[1,2],[2,3],[3,4],[4,5]], queries = [[1,3],[2,1],[1,1],[2,2],[1,2]]
Output: [3,2,3]
Explanation:

- Initially, all stations
{1, 2, 3, 4, 5}are online and form a single power grid. - Query
[1,3]: Station 3 is online, so the maintenance check is resolved by station 3. - Query
[2,1]: Station 1 goes offline. The remaining online stations are{2, 3, 4, 5}. - Query
[1,1]: Station 1 is offline, so the check is resolved by the operational station with the smallestidamong{2, 3, 4, 5}, which is station 2. - Query
[2,2]: Station 2 goes offline. The remaining online stations are{3, 4, 5}. - Query
[1,2]: Station 2 is offline, so the check is resolved by the operational station with the smallestidamong{3, 4, 5}, which is station 3.
Example 2:
Input: c = 3, connections = [], queries = [[1,1],[2,1],[1,1]]
Output: [1,-1]
Explanation:
- There are no connections, so each station is its own isolated grid.
- Query
[1,1]: Station 1 is online in its isolated grid, so the maintenance check is resolved by station 1. - Query
[2,1]: Station 1 goes offline. - Query
[1,1]: Station 1 is offline and there are no other stations in its grid, so the result is -1.
Constraints:
1 <= c <= 1050 <= n == connections.length <= min(105, c * (c - 1) / 2)connections[i].length == 21 <= ui, vi <= cui != vi1 <= queries.length <= 2 * 105queries[i].length == 2queries[i][0]is either 1 or 2.1 <= queries[i][1] <= c
Solutions
Solution 1
-
class UnionFind { private final int[] p; private final int[] size; public UnionFind(int n) { p = new int[n]; size = new int[n]; for (int i = 0; i < n; ++i) { p[i] = i; size[i] = 1; } } public int find(int x) { if (p[x] != x) { p[x] = find(p[x]); } return p[x]; } public boolean union(int a, int b) { int pa = find(a), pb = find(b); if (pa == pb) { return false; } if (size[pa] > size[pb]) { p[pb] = pa; size[pa] += size[pb]; } else { p[pa] = pb; size[pb] += size[pa]; } return true; } } class Solution { public int[] processQueries(int c, int[][] connections, int[][] queries) { UnionFind uf = new UnionFind(c + 1); for (int[] e : connections) { uf.union(e[0], e[1]); } TreeSet<Integer>[] st = new TreeSet[c + 1]; Arrays.setAll(st, k -> new TreeSet<>()); for (int i = 1; i <= c; i++) { int root = uf.find(i); st[root].add(i); } List<Integer> ans = new ArrayList<>(); for (int[] q : queries) { int a = q[0], x = q[1]; int root = uf.find(x); if (a == 1) { if (st[root].contains(x)) { ans.add(x); } else if (!st[root].isEmpty()) { ans.add(st[root].first()); } else { ans.add(-1); } } else { st[root].remove(x); } } return ans.stream().mapToInt(Integer::intValue).toArray(); } } -
class UnionFind { public: UnionFind(int n) { p = vector<int>(n); size = vector<int>(n, 1); iota(p.begin(), p.end(), 0); } bool unite(int a, int b) { int pa = find(a), pb = find(b); if (pa == pb) { return false; } if (size[pa] > size[pb]) { p[pb] = pa; size[pa] += size[pb]; } else { p[pa] = pb; size[pb] += size[pa]; } return true; } int find(int x) { if (p[x] != x) { p[x] = find(p[x]); } return p[x]; } private: vector<int> p, size; }; class Solution { public: vector<int> processQueries(int c, vector<vector<int>>& connections, vector<vector<int>>& queries) { UnionFind uf(c + 1); for (auto& e : connections) { uf.unite(e[0], e[1]); } vector<set<int>> st(c + 1); for (int i = 1; i <= c; i++) { st[uf.find(i)].insert(i); } vector<int> ans; for (auto& q : queries) { int a = q[0], x = q[1]; int root = uf.find(x); if (a == 1) { if (st[root].count(x)) { ans.push_back(x); } else if (!st[root].empty()) { ans.push_back(*st[root].begin()); } else { ans.push_back(-1); } } else { st[root].erase(x); } } return ans; } }; -
class UnionFind: def __init__(self, n): self.p = list(range(n)) self.size = [1] * n def find(self, x): if self.p[x] != x: self.p[x] = self.find(self.p[x]) return self.p[x] def union(self, a, b): pa, pb = self.find(a), self.find(b) if pa == pb: return False if self.size[pa] > self.size[pb]: self.p[pb] = pa self.size[pa] += self.size[pb] else: self.p[pa] = pb self.size[pb] += self.size[pa] return True class Solution: def processQueries( self, c: int, connections: List[List[int]], queries: List[List[int]] ) -> List[int]: uf = UnionFind(c + 1) for u, v in connections: uf.union(u, v) st = [SortedList() for _ in range(c + 1)] for i in range(1, c + 1): st[uf.find(i)].add(i) ans = [] for a, x in queries: root = uf.find(x) if a == 1: if x in st[root]: ans.append(x) elif len(st[root]): ans.append(st[root][0]) else: ans.append(-1) else: st[root].discard(x) return ans