Welcome to Subscribe On Youtube

3493. Properties Graph

Description

You are given a 2D integer array properties having dimensions n x m and an integer k.

Define a function intersect(a, b) that returns the number of distinct integers common to both arrays a and b.

Construct an undirected graph where each index i corresponds to properties[i]. There is an edge between node i and node j if and only if intersect(properties[i], properties[j]) >= k, where i and j are in the range [0, n - 1] and i != j.

Return the number of connected components in the resulting graph.

 

Example 1:

Input: properties = [[1,2],[1,1],[3,4],[4,5],[5,6],[7,7]], k = 1

Output: 3

Explanation:

The graph formed has 3 connected components:

Example 2:

Input: properties = [[1,2,3],[2,3,4],[4,3,5]], k = 2

Output: 1

Explanation:

The graph formed has 1 connected component:

Example 3:

Input: properties = [[1,1],[1,1]], k = 2

Output: 2

Explanation:

intersect(properties[0], properties[1]) = 1, which is less than k. This means there is no edge between properties[0] and properties[1] in the graph.

 

Constraints:

  • 1 <= n == properties.length <= 100
  • 1 <= m == properties[i].length <= 100
  • 1 <= properties[i][j] <= 100
  • 1 <= k <= m

Solutions

Solution 1: Hash Table + DFS

We first convert each attribute array into a hash table and store them in a hash table array $\textit{ss}$. We define a graph $\textit{g}$, where $\textit{g}[i]$ stores the indices of attribute arrays that are connected to $\textit{properties}[i]$.

Then, we iterate through all attribute hash tables. For each pair of attribute hash tables $(i, j)$ where $j < i$, we check whether the number of common elements between them is at least $k$. If so, we add an edge from $i$ to $j$ in the graph $\textit{g}$, as well as an edge from $j$ to $i$.

Finally, we use Depth-First Search (DFS) to compute the number of connected components in the graph $\textit{g}$.

The time complexity is $O(n^2 \times m)$, and the space complexity is $O(n \times m)$, where $n$ is the length of the attribute arrays and $m$ is the number of elements in an attribute array.

  • class Solution {
        private List<Integer>[] g;
        private boolean[] vis;
    
        public int numberOfComponents(int[][] properties, int k) {
            int n = properties.length;
            g = new List[n];
            Set<Integer>[] ss = new Set[n];
            Arrays.setAll(g, i -> new ArrayList<>());
            Arrays.setAll(ss, i -> new HashSet<>());
            for (int i = 0; i < n; ++i) {
                for (int x : properties[i]) {
                    ss[i].add(x);
                }
            }
            for (int i = 0; i < n; ++i) {
                for (int j = 0; j < i; ++j) {
                    int cnt = 0;
                    for (int x : ss[i]) {
                        if (ss[j].contains(x)) {
                            ++cnt;
                        }
                    }
                    if (cnt >= k) {
                        g[i].add(j);
                        g[j].add(i);
                    }
                }
            }
    
            int ans = 0;
            vis = new boolean[n];
            for (int i = 0; i < n; ++i) {
                if (!vis[i]) {
                    dfs(i);
                    ++ans;
                }
            }
            return ans;
        }
    
        private void dfs(int i) {
            vis[i] = true;
            for (int j : g[i]) {
                if (!vis[j]) {
                    dfs(j);
                }
            }
        }
    }
    
    
  • class Solution {
    public:
        int numberOfComponents(vector<vector<int>>& properties, int k) {
            int n = properties.size();
            unordered_set<int> ss[n];
            vector<int> g[n];
            for (int i = 0; i < n; ++i) {
                for (int x : properties[i]) {
                    ss[i].insert(x);
                }
            }
            for (int i = 0; i < n; ++i) {
                auto& s1 = ss[i];
                for (int j = 0; j < i; ++j) {
                    auto& s2 = ss[j];
                    int cnt = 0;
                    for (int x : s1) {
                        if (s2.contains(x)) {
                            ++cnt;
                        }
                    }
                    if (cnt >= k) {
                        g[i].push_back(j);
                        g[j].push_back(i);
                    }
                }
            }
            int ans = 0;
            vector<bool> vis(n);
            auto dfs = [&](this auto&& dfs, int i) -> void {
                vis[i] = true;
                for (int j : g[i]) {
                    if (!vis[j]) {
                        dfs(j);
                    }
                }
            };
            for (int i = 0; i < n; ++i) {
                if (!vis[i]) {
                    dfs(i);
                    ++ans;
                }
            }
            return ans;
        }
    };
    
    
  • class Solution:
        def numberOfComponents(self, properties: List[List[int]], k: int) -> int:
            def dfs(i: int) -> None:
                vis[i] = True
                for j in g[i]:
                    if not vis[j]:
                        dfs(j)
    
            n = len(properties)
            ss = list(map(set, properties))
            g = [[] for _ in range(n)]
            for i, s1 in enumerate(ss):
                for j in range(i):
                    s2 = ss[j]
                    if len(s1 & s2) >= k:
                        g[i].append(j)
                        g[j].append(i)
            ans = 0
            vis = [False] * n
            for i in range(n):
                if not vis[i]:
                    dfs(i)
                    ans += 1
            return ans
    
    
  • func numberOfComponents(properties [][]int, k int) (ans int) {
    	n := len(properties)
    	ss := make([]map[int]struct{}, n)
    	g := make([][]int, n)
    
    	for i := 0; i < n; i++ {
    		ss[i] = make(map[int]struct{})
    		for _, x := range properties[i] {
    			ss[i][x] = struct{}{}
    		}
    	}
    
    	for i := 0; i < n; i++ {
    		for j := 0; j < i; j++ {
    			cnt := 0
    			for x := range ss[i] {
    				if _, ok := ss[j][x]; ok {
    					cnt++
    				}
    			}
    			if cnt >= k {
    				g[i] = append(g[i], j)
    				g[j] = append(g[j], i)
    			}
    		}
    	}
    
    	vis := make([]bool, n)
    	var dfs func(int)
    	dfs = func(i int) {
    		vis[i] = true
    		for _, j := range g[i] {
    			if !vis[j] {
    				dfs(j)
    			}
    		}
    	}
    
    	for i := 0; i < n; i++ {
    		if !vis[i] {
    			dfs(i)
    			ans++
    		}
    	}
    	return
    }
    
    
  • function numberOfComponents(properties: number[][], k: number): number {
        const n = properties.length;
        const ss: Set<number>[] = Array.from({ length: n }, () => new Set());
        const g: number[][] = Array.from({ length: n }, () => []);
    
        for (let i = 0; i < n; i++) {
            for (const x of properties[i]) {
                ss[i].add(x);
            }
        }
    
        for (let i = 0; i < n; i++) {
            for (let j = 0; j < i; j++) {
                let cnt = 0;
                for (const x of ss[i]) {
                    if (ss[j].has(x)) {
                        cnt++;
                    }
                }
                if (cnt >= k) {
                    g[i].push(j);
                    g[j].push(i);
                }
            }
        }
    
        let ans = 0;
        const vis: boolean[] = Array(n).fill(false);
    
        const dfs = (i: number) => {
            vis[i] = true;
            for (const j of g[i]) {
                if (!vis[j]) {
                    dfs(j);
                }
            }
        };
    
        for (let i = 0; i < n; i++) {
            if (!vis[i]) {
                dfs(i);
                ans++;
            }
        }
        return ans;
    }
    
    

All Problems

All Solutions