Welcome to Subscribe On Youtube
3493. Properties Graph
Description
You are given a 2D integer array properties
having dimensions n x m
and an integer k
.
Define a function intersect(a, b)
that returns the number of distinct integers common to both arrays a
and b
.
Construct an undirected graph where each index i
corresponds to properties[i]
. There is an edge between node i
and node j
if and only if intersect(properties[i], properties[j]) >= k
, where i
and j
are in the range [0, n - 1]
and i != j
.
Return the number of connected components in the resulting graph.
Example 1:
Input: properties = [[1,2],[1,1],[3,4],[4,5],[5,6],[7,7]], k = 1
Output: 3
Explanation:
The graph formed has 3 connected components:
Example 2:
Input: properties = [[1,2,3],[2,3,4],[4,3,5]], k = 2
Output: 1
Explanation:
The graph formed has 1 connected component:
Example 3:
Input: properties = [[1,1],[1,1]], k = 2
Output: 2
Explanation:
intersect(properties[0], properties[1]) = 1
, which is less than k
. This means there is no edge between properties[0]
and properties[1]
in the graph.
Constraints:
1 <= n == properties.length <= 100
1 <= m == properties[i].length <= 100
1 <= properties[i][j] <= 100
1 <= k <= m
Solutions
Solution 1: Hash Table + DFS
We first convert each attribute array into a hash table and store them in a hash table array $\textit{ss}$. We define a graph $\textit{g}$, where $\textit{g}[i]$ stores the indices of attribute arrays that are connected to $\textit{properties}[i]$.
Then, we iterate through all attribute hash tables. For each pair of attribute hash tables $(i, j)$ where $j < i$, we check whether the number of common elements between them is at least $k$. If so, we add an edge from $i$ to $j$ in the graph $\textit{g}$, as well as an edge from $j$ to $i$.
Finally, we use Depth-First Search (DFS) to compute the number of connected components in the graph $\textit{g}$.
The time complexity is $O(n^2 \times m)$, and the space complexity is $O(n \times m)$, where $n$ is the length of the attribute arrays and $m$ is the number of elements in an attribute array.
-
class Solution { private List<Integer>[] g; private boolean[] vis; public int numberOfComponents(int[][] properties, int k) { int n = properties.length; g = new List[n]; Set<Integer>[] ss = new Set[n]; Arrays.setAll(g, i -> new ArrayList<>()); Arrays.setAll(ss, i -> new HashSet<>()); for (int i = 0; i < n; ++i) { for (int x : properties[i]) { ss[i].add(x); } } for (int i = 0; i < n; ++i) { for (int j = 0; j < i; ++j) { int cnt = 0; for (int x : ss[i]) { if (ss[j].contains(x)) { ++cnt; } } if (cnt >= k) { g[i].add(j); g[j].add(i); } } } int ans = 0; vis = new boolean[n]; for (int i = 0; i < n; ++i) { if (!vis[i]) { dfs(i); ++ans; } } return ans; } private void dfs(int i) { vis[i] = true; for (int j : g[i]) { if (!vis[j]) { dfs(j); } } } }
-
class Solution { public: int numberOfComponents(vector<vector<int>>& properties, int k) { int n = properties.size(); unordered_set<int> ss[n]; vector<int> g[n]; for (int i = 0; i < n; ++i) { for (int x : properties[i]) { ss[i].insert(x); } } for (int i = 0; i < n; ++i) { auto& s1 = ss[i]; for (int j = 0; j < i; ++j) { auto& s2 = ss[j]; int cnt = 0; for (int x : s1) { if (s2.contains(x)) { ++cnt; } } if (cnt >= k) { g[i].push_back(j); g[j].push_back(i); } } } int ans = 0; vector<bool> vis(n); auto dfs = [&](this auto&& dfs, int i) -> void { vis[i] = true; for (int j : g[i]) { if (!vis[j]) { dfs(j); } } }; for (int i = 0; i < n; ++i) { if (!vis[i]) { dfs(i); ++ans; } } return ans; } };
-
class Solution: def numberOfComponents(self, properties: List[List[int]], k: int) -> int: def dfs(i: int) -> None: vis[i] = True for j in g[i]: if not vis[j]: dfs(j) n = len(properties) ss = list(map(set, properties)) g = [[] for _ in range(n)] for i, s1 in enumerate(ss): for j in range(i): s2 = ss[j] if len(s1 & s2) >= k: g[i].append(j) g[j].append(i) ans = 0 vis = [False] * n for i in range(n): if not vis[i]: dfs(i) ans += 1 return ans
-
func numberOfComponents(properties [][]int, k int) (ans int) { n := len(properties) ss := make([]map[int]struct{}, n) g := make([][]int, n) for i := 0; i < n; i++ { ss[i] = make(map[int]struct{}) for _, x := range properties[i] { ss[i][x] = struct{}{} } } for i := 0; i < n; i++ { for j := 0; j < i; j++ { cnt := 0 for x := range ss[i] { if _, ok := ss[j][x]; ok { cnt++ } } if cnt >= k { g[i] = append(g[i], j) g[j] = append(g[j], i) } } } vis := make([]bool, n) var dfs func(int) dfs = func(i int) { vis[i] = true for _, j := range g[i] { if !vis[j] { dfs(j) } } } for i := 0; i < n; i++ { if !vis[i] { dfs(i) ans++ } } return }
-
function numberOfComponents(properties: number[][], k: number): number { const n = properties.length; const ss: Set<number>[] = Array.from({ length: n }, () => new Set()); const g: number[][] = Array.from({ length: n }, () => []); for (let i = 0; i < n; i++) { for (const x of properties[i]) { ss[i].add(x); } } for (let i = 0; i < n; i++) { for (let j = 0; j < i; j++) { let cnt = 0; for (const x of ss[i]) { if (ss[j].has(x)) { cnt++; } } if (cnt >= k) { g[i].push(j); g[j].push(i); } } } let ans = 0; const vis: boolean[] = Array(n).fill(false); const dfs = (i: number) => { vis[i] = true; for (const j of g[i]) { if (!vis[j]) { dfs(j); } } }; for (let i = 0; i < n; i++) { if (!vis[i]) { dfs(i); ans++; } } return ans; }