Welcome to Subscribe On Youtube

3478. Choose K Elements With Maximum Sum

Description

You are given two integer arrays, nums1 and nums2, both of length n, along with a positive integer k.

For each index i from 0 to n - 1, perform the following:

  • Find all indices j where nums1[j] is less than nums1[i].
  • Choose at most k values of nums2[j] at these indices to maximize the total sum.

Return an array answer of size n, where answer[i] represents the result for the corresponding index i.

 

Example 1:

Input: nums1 = [4,2,1,5,3], nums2 = [10,20,30,40,50], k = 2

Output: [80,30,0,80,50]

Explanation:

  • For i = 0: Select the 2 largest values from nums2 at indices [1, 2, 4] where nums1[j] < nums1[0], resulting in 50 + 30 = 80.
  • For i = 1: Select the 2 largest values from nums2 at index [2] where nums1[j] < nums1[1], resulting in 30.
  • For i = 2: No indices satisfy nums1[j] < nums1[2], resulting in 0.
  • For i = 3: Select the 2 largest values from nums2 at indices [0, 1, 2, 4] where nums1[j] < nums1[3], resulting in 50 + 30 = 80.
  • For i = 4: Select the 2 largest values from nums2 at indices [1, 2] where nums1[j] < nums1[4], resulting in 30 + 20 = 50.

Example 2:

Input: nums1 = [2,2,2,2], nums2 = [3,1,2,3], k = 1

Output: [0,0,0,0]

Explanation:

Since all elements in nums1 are equal, no indices satisfy the condition nums1[j] < nums1[i] for any i, resulting in 0 for all positions.

 

Constraints:

  • n == nums1.length == nums2.length
  • 1 <= n <= 105
  • 1 <= nums1[i], nums2[i] <= 106
  • 1 <= k <= n

Solutions

Solution 1: Sorting + Priority Queue (Min-Heap)

We can convert the array nums1 into an array arr, where each element is a tuple (x,i), representing the value x at index i in nums1. Then, we sort the array arr in ascending order by x.

We use a min-heap pq to maintain the elements from the array nums2. Initially, pq is empty. We use a variable s to record the sum of the elements in pq. Additionally, we use a pointer j to maintain the current position in the array arr that needs to be added to pq.

We traverse the array arr. For the h-th element (x,i), we add all elements nums2[arr[j][1]] to pq that satisfy j<h and arr[j][0]<x, and add these elements to s. If the size of pq exceeds k, we pop the smallest element from pq and subtract it from s. Then, we update the value of ans[i] to s.

After traversing, we return the answer array ans.

The time complexity is O(nlogn), and the space complexity is O(n). Here, n is the length of the array.

  • class Solution {
        public long[] findMaxSum(int[] nums1, int[] nums2, int k) {
            int n = nums1.length;
            int[][] arr = new int[n][0];
            for (int i = 0; i < n; ++i) {
                arr[i] = new int[] {nums1[i], i};
            }
            Arrays.sort(arr, (a, b) -> a[0] - b[0]);
            PriorityQueue<Integer> pq = new PriorityQueue<>();
            long s = 0;
            long[] ans = new long[n];
            int j = 0;
            for (int h = 0; h < n; ++h) {
                int x = arr[h][0], i = arr[h][1];
                while (j < h && arr[j][0] < x) {
                    int y = nums2[arr[j][1]];
                    pq.offer(y);
                    s += y;
                    if (pq.size() > k) {
                        s -= pq.poll();
                    }
                    ++j;
                }
                ans[i] = s;
            }
            return ans;
        }
    }
    
    
  • class Solution {
    public:
        vector<long long> findMaxSum(vector<int>& nums1, vector<int>& nums2, int k) {
            int n = nums1.size();
            vector<pair<int, int>> arr(n);
            for (int i = 0; i < n; ++i) {
                arr[i] = {nums1[i], i};
            }
            ranges::sort(arr);
            priority_queue<int, vector<int>, greater<int>> pq;
            long long s = 0;
            int j = 0;
            vector<long long> ans(n);
            for (int h = 0; h < n; ++h) {
                auto [x, i] = arr[h];
                while (j < h && arr[j].first < x) {
                    int y = nums2[arr[j].second];
                    pq.push(y);
                    s += y;
                    if (pq.size() > k) {
                        s -= pq.top();
                        pq.pop();
                    }
                    ++j;
                }
                ans[i] = s;
            }
            return ans;
        }
    };
    
    
  • class Solution:
        def findMaxSum(self, nums1: List[int], nums2: List[int], k: int) -> List[int]:
            arr = [(x, i) for i, x in enumerate(nums1)]
            arr.sort()
            pq = []
            s = j = 0
            n = len(arr)
            ans = [0] * n
            for h, (x, i) in enumerate(arr):
                while j < h and arr[j][0] < x:
                    y = nums2[arr[j][1]]
                    heappush(pq, y)
                    s += y
                    if len(pq) > k:
                        s -= heappop(pq)
                    j += 1
                ans[i] = s
            return ans
    
    
  • func findMaxSum(nums1 []int, nums2 []int, k int) []int64 {
    	n := len(nums1)
    	arr := make([][2]int, n)
    	for i, x := range nums1 {
    		arr[i] = [2]int{x, i}
    	}
    	ans := make([]int64, n)
    	sort.Slice(arr, func(i, j int) bool { return arr[i][0] < arr[j][0] })
    	pq := hp{}
    	var s int64
    	j := 0
    	for h, e := range arr {
    		x, i := e[0], e[1]
    		for j < h && arr[j][0] < x {
    			y := nums2[arr[j][1]]
    			heap.Push(&pq, y)
    			s += int64(y)
    			if pq.Len() > k {
    				s -= int64(heap.Pop(&pq).(int))
    			}
    			j++
    		}
    		ans[i] = s
    	}
    	return ans
    }
    
    type hp struct{ sort.IntSlice }
    
    func (h hp) Less(i, j int) bool { return h.IntSlice[i] < h.IntSlice[j] }
    func (h *hp) Push(v any)        { h.IntSlice = append(h.IntSlice, v.(int)) }
    func (h *hp) Pop() any {
    	a := h.IntSlice
    	v := a[len(a)-1]
    	h.IntSlice = a[:len(a)-1]
    	return v
    }
    
    
  • function findMaxSum(nums1: number[], nums2: number[], k: number): number[] {
        const n = nums1.length;
        const arr = nums1.map((x, i) => [x, i]).sort((a, b) => a[0] - b[0]);
        const pq = new MinPriorityQueue();
        let [s, j] = [0, 0];
        const ans: number[] = Array(k).fill(0);
        for (let h = 0; h < n; ++h) {
            const [x, i] = arr[h];
            while (j < h && arr[j][0] < x) {
                const y = nums2[arr[j++][1]];
                pq.enqueue(y);
                s += y;
                if (pq.size() > k) {
                    s -= pq.dequeue();
                }
            }
            ans[i] = s;
        }
        return ans;
    }
    
    

All Problems

All Solutions