Welcome to Subscribe On Youtube

3471. Find the Largest Almost Missing Integer

Description

You are given an integer array nums and an integer k.

An integer x is almost missing from nums if x appears in exactly one subarray of size k within nums.

Return the largest almost missing integer from nums. If no such integer exists, return -1.

A subarray is a contiguous sequence of elements within an array.

 

Example 1:

Input: nums = [3,9,2,1,7], k = 3

Output: 7

Explanation:

  • 1 appears in 2 subarrays of size 3: [9, 2, 1] and [2, 1, 7].
  • 2 appears in 3 subarrays of size 3: [3, 9, 2], [9, 2, 1], [2, 1, 7].
  • 3 appears in 1 subarray of size 3: [3, 9, 2].
  • 7 appears in 1 subarray of size 3: [2, 1, 7].
  • 9 appears in 2 subarrays of size 3: [3, 9, 2], and [9, 2, 1].

We return 7 since it is the largest integer that appears in exactly one subarray of size k.

Example 2:

Input: nums = [3,9,7,2,1,7], k = 4

Output: 3

Explanation:

  • 1 appears in 2 subarrays of size 4: [9, 7, 2, 1], [7, 2, 1, 7].
  • 2 appears in 3 subarrays of size 4: [3, 9, 7, 2], [9, 7, 2, 1], [7, 2, 1, 7].
  • 3 appears in 1 subarray of size 4: [3, 9, 7, 2].
  • 7 appears in 3 subarrays of size 4: [3, 9, 7, 2], [9, 7, 2, 1], [7, 2, 1, 7].
  • 9 appears in 2 subarrays of size 4: [3, 9, 7, 2], [9, 7, 2, 1].

We return 3 since it is the largest and only integer that appears in exactly one subarray of size k.

Example 3:

Input: nums = [0,0], k = 1

Output: -1

Explanation:

There is no integer that appears in only one subarray of size 1.

 

Constraints:

  • 1 <= nums.length <= 50
  • 0 <= nums[i] <= 50
  • 1 <= k <= nums.length

Solutions

Solution 1: Case Analysis

If $k = 1$, then each element in the array forms a subarray of size $1$. In this case, we only need to find the maximum value among the elements that appear exactly once in the array.

If $k = n$, then the entire array forms a subarray of size $n$. In this case, we only need to return the maximum value in the array.

If $1 < k < n$, only $\textit{nums}[0]$ and $\textit{nums}[n-1]$ can be the almost missing integers. If they appear elsewhere in the array, they are not almost missing integers. Therefore, we only need to check if $\textit{nums}[0]$ and $\textit{nums}[n-1]$ appear elsewhere in the array and return the maximum value among them.

If no almost missing integer exists, return $-1$.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $\textit{nums}$.

  • class Solution {
        private int[] nums;
    
        public int largestInteger(int[] nums, int k) {
            this.nums = nums;
            if (k == 1) {
                Map<Integer, Integer> cnt = new HashMap<>();
                for (int x : nums) {
                    cnt.merge(x, 1, Integer::sum);
                }
                int ans = -1;
                for (var e : cnt.entrySet()) {
                    if (e.getValue() == 1) {
                        ans = Math.max(ans, e.getKey());
                    }
                }
                return ans;
            }
            if (k == nums.length) {
                return Arrays.stream(nums).max().getAsInt();
            }
            return Math.max(f(0), f(nums.length - 1));
        }
    
        private int f(int k) {
            for (int i = 0; i < nums.length; ++i) {
                if (i != k && nums[i] == nums[k]) {
                    return -1;
                }
            }
            return nums[k];
        }
    }
    
    
  • class Solution {
    public:
        int largestInteger(vector<int>& nums, int k) {
            if (k == 1) {
                unordered_map<int, int> cnt;
                for (int x : nums) {
                    ++cnt[x];
                }
                int ans = -1;
                for (auto& [x, v] : cnt) {
                    if (v == 1) {
                        ans = max(ans, x);
                    }
                }
                return ans;
            }
            int n = nums.size();
            if (k == n) {
                return ranges::max(nums);
            }
            auto f = [&](int k) -> int {
                for (int i = 0; i < n; ++i) {
                    if (i != k && nums[i] == nums[k]) {
                        return -1;
                    }
                }
                return nums[k];
            };
            return max(f(0), f(n - 1));
        }
    };
    
    
  • class Solution:
        def largestInteger(self, nums: List[int], k: int) -> int:
            def f(k: int) -> int:
                for i, x in enumerate(nums):
                    if i != k and x == nums[k]:
                        return -1
                return nums[k]
    
            if k == 1:
                cnt = Counter(nums)
                return max((x for x, v in cnt.items() if v == 1), default=-1)
            if k == len(nums):
                return max(nums)
            return max(f(0), f(len(nums) - 1))
    
    
  • func largestInteger(nums []int, k int) int {
        if k == 1 {
            cnt := make(map[int]int)
            for _, x := range nums {
                cnt[x]++
            }
            ans := -1
            for x, v := range cnt {
                if v == 1 {
                    ans = max(ans, x)
                }
            }
            return ans
        }
    
        n := len(nums)
        if k == n {
            return slices.Max(nums)
        }
    
        f := func(k int) int {
            for i, x := range nums {
                if i != k && x == nums[k] {
                    return -1
                }
            }
            return nums[k]
        }
    
        return max(f(0), f(n-1))
    }
    
    
  • function largestInteger(nums: number[], k: number): number {
        if (k === 1) {
            const cnt = new Map<number, number>();
            for (const x of nums) {
                cnt.set(x, (cnt.get(x) || 0) + 1);
            }
            let ans = -1;
            for (const [x, v] of cnt.entries()) {
                if (v === 1 && x > ans) {
                    ans = x;
                }
            }
            return ans;
        }
    
        const n = nums.length;
        if (k === n) {
            return Math.max(...nums);
        }
    
        const f = (k: number): number => {
            for (let i = 0; i < n; i++) {
                if (i !== k && nums[i] === nums[k]) {
                    return -1;
                }
            }
            return nums[k];
        };
    
        return Math.max(f(0), f(n - 1));
    }
    
    

All Problems

All Solutions