Welcome to Subscribe On Youtube
3466. Maximum Coin Collection ๐
Description
Mario drives on a two-lane freeway with coins every mile. You are given two integer arrays, lane1
and lane2
, where the value at the ith
index represents the number of coins he gains or loses in the ith
mile in that lane.
- If Mario is in lane 1 at mile
i
andlane1[i] > 0
, Mario gainslane1[i]
coins. - If Mario is in lane 1 at mile
i
andlane1[i] < 0
, Mario pays a toll and losesabs(lane1[i])
coins. - The same rules apply for
lane2
.
Mario can enter the freeway anywhere and exit anytime after traveling at least one mile. Mario always enters the freeway on lane 1 but can switch lanes at most 2 times.
A lane switch is when Mario goes from lane 1 to lane 2 or vice versa.
Return the maximum number of coins Mario can earn after performing at most 2 lane switches.
Note: Mario can switch lanes immediately upon entering or just before exiting the freeway.
Example 1:
Input: lane1 = [1,-2,-10,3], lane2 = [-5,10,0,1]
Output: 14
Explanation:
- Mario drives the first mile on lane 1.
- He then changes to lane 2 and drives for two miles.
- He changes back to lane 1 for the last mile.
Mario collects 1 + 10 + 0 + 3 = 14
coins.
Example 2:
Input: lane1 = [1,-1,-1,-1], lane2 = [0,3,4,-5]
Output: 8
Explanation:
- Mario starts at mile 0 in lane 1 and drives one mile.
- He then changes to lane 2 and drives for two more miles. He exits the freeway before mile 3.
He collects 1 + 3 + 4 = 8
coins.
Example 3:
Input: lane1 = [-5,-4,-3], lane2 = [-1,2,3]
Output: 5
Explanation:
- Mario enters at mile 1 and immediately switches to lane 2. He stays here the entire way.
He collects a total of 2 + 3 = 5
coins.
Example 4:
Input: lane1 = [-3,-3,-3], lane2 = [9,-2,4]
Output: 11
Explanation:
- Mario starts at the beginning of the freeway and immediately switches to lane 2. He stays here the whole way.
He collects a total of 9 + (-2) + 4 = 11
coins.
Example 5:
Input: lane1 = [-10], lane2 = [-2]
Output: -2
Explanation:
- Since Mario must ride on the freeway for at least one mile, he rides just one mile in lane 2.
He collects a total of -2 coins.
Constraints:
1 <= lane1.length == lane2.length <= 105
-109 <= lane1[i], lane2[i] <= 109
Solutions
Solution 1: Memoized Search
We design a function
The function
- If
, it means Mario has reached the end, return 0;iโฅn - If no lane change is made, Mario can drive 1 mile, then exit, or continue driving, taking the maximum of the two, i.e.,
;max(x,dfs(i+1,j,k)+x) - If a lane change is possible, there are two choices: drive 1 mile and then change lanes, or change lanes directly, taking the maximum of these two cases, i.e.,
.max(dfs(i+1,jโ1,kโ1)+x,dfs(i,jโ1,kโ1)) - Where
represents the number of coins at the current position.x
To avoid repeated calculations, we use memoized search to store the results that have already been computed.
Time complexity is
-
class Solution { private int n; private int[] lane1; private int[] lane2; private Long[][][] f; public long maxCoins(int[] lane1, int[] lane2) { n = lane1.length; this.lane1 = lane1; this.lane2 = lane2; f = new Long[n][2][3]; long ans = Long.MIN_VALUE; for (int i = 0; i < n; ++i) { ans = Math.max(ans, dfs(i, 0, 2)); } return ans; } private long dfs(int i, int j, int k) { if (i >= n) { return 0; } if (f[i][j][k] != null) { return f[i][j][k]; } int x = j == 0 ? lane1[i] : lane2[i]; long ans = Math.max(x, dfs(i + 1, j, k) + x); if (k > 0) { ans = Math.max(ans, dfs(i + 1, j ^ 1, k - 1) + x); ans = Math.max(ans, dfs(i, j ^ 1, k - 1)); } return f[i][j][k] = ans; } }
-
class Solution { public: long long maxCoins(vector<int>& lane1, vector<int>& lane2) { int n = lane1.size(); long long ans = -1e18; vector<vector<vector<long long>>> f(n, vector<vector<long long>>(2, vector<long long>(3, -1e18))); auto dfs = [&](this auto&& dfs, int i, int j, int k) -> long long { if (i >= n) { return 0LL; } if (f[i][j][k] != -1e18) { return f[i][j][k]; } int x = j == 0 ? lane1[i] : lane2[i]; long long ans = max((long long) x, dfs(i + 1, j, k) + x); if (k > 0) { ans = max(ans, dfs(i + 1, j ^ 1, k - 1) + x); ans = max(ans, dfs(i, j ^ 1, k - 1)); } return f[i][j][k] = ans; }; for (int i = 0; i < n; ++i) { ans = max(ans, dfs(i, 0, 2)); } return ans; } };
-
class Solution: def maxCoins(self, lane1: List[int], lane2: List[int]) -> int: @cache def dfs(i: int, j: int, k: int) -> int: if i >= n: return 0 x = lane1[i] if j == 0 else lane2[i] ans = max(x, dfs(i + 1, j, k) + x) if k > 0: ans = max(ans, dfs(i + 1, j ^ 1, k - 1) + x) ans = max(ans, dfs(i, j ^ 1, k - 1)) return ans n = len(lane1) ans = -inf for i in range(n): ans = max(ans, dfs(i, 0, 2)) return ans
-
func maxCoins(lane1 []int, lane2 []int) int64 { n := len(lane1) f := make([][2][3]int64, n) for i := range f { for j := range f[i] { for k := range f[i][j] { f[i][j][k] = -1 } } } var dfs func(int, int, int) int64 dfs = func(i, j, k int) int64 { if i >= n { return 0 } if f[i][j][k] != -1 { return f[i][j][k] } x := int64(lane1[i]) if j == 1 { x = int64(lane2[i]) } ans := max(x, dfs(i+1, j, k)+x) if k > 0 { ans = max(ans, dfs(i+1, j^1, k-1)+x) ans = max(ans, dfs(i, j^1, k-1)) } f[i][j][k] = ans return ans } ans := int64(-1e18) for i := range lane1 { ans = max(ans, dfs(i, 0, 2)) } return ans }
-
function maxCoins(lane1: number[], lane2: number[]): number { const n = lane1.length; const NEG_INF = -1e18; const f: number[][][] = Array.from({ length: n }, () => Array.from({ length: 2 }, () => Array(3).fill(NEG_INF)), ); const dfs = (dfs: Function, i: number, j: number, k: number): number => { if (i >= n) { return 0; } if (f[i][j][k] !== NEG_INF) { return f[i][j][k]; } const x = j === 0 ? lane1[i] : lane2[i]; let ans = Math.max(x, dfs(dfs, i + 1, j, k) + x); if (k > 0) { ans = Math.max(ans, dfs(dfs, i + 1, j ^ 1, k - 1) + x); ans = Math.max(ans, dfs(dfs, i, j ^ 1, k - 1)); } f[i][j][k] = ans; return ans; }; let ans = NEG_INF; for (let i = 0; i < n; ++i) { ans = Math.max(ans, dfs(dfs, i, 0, 2)); } return ans; }