Welcome to Subscribe On Youtube
3443. Maximum Manhattan Distance After K Changes
Description
You are given a string s
consisting of the characters 'N'
, 'S'
, 'E'
, and 'W'
, where s[i]
indicates movements in an infinite grid:
'N'
: Move north by 1 unit.'S'
: Move south by 1 unit.'E'
: Move east by 1 unit.'W'
: Move west by 1 unit.
Initially, you are at the origin (0, 0)
. You can change at most k
characters to any of the four directions.
Find the maximum Manhattan distance from the origin that can be achieved at any time while performing the movements in order.
The Manhattan Distance between two cells (xi, yi)
and (xj, yj)
is \|xi - xj\| + \|yi - yj\|
.
Example 1:
Input: s = "NWSE", k = 1
Output: 3
Explanation:
Change s[2]
from 'S'
to 'N'
. The string s
becomes "NWNE"
.
Movement | Position (x, y) | Manhattan Distance | Maximum |
---|---|---|---|
s[0] == 'N' | (0, 1) | 0 + 1 = 1 | 1 |
s[1] == 'W' | (-1, 1) | 1 + 1 = 2 | 2 |
s[2] == 'N' | (-1, 2) | 1 + 2 = 3 | 3 |
s[3] == 'E' | (0, 2) | 0 + 2 = 2 | 3 |
The maximum Manhattan distance from the origin that can be achieved is 3. Hence, 3 is the output.
Example 2:
Input: s = "NSWWEW", k = 3
Output: 6
Explanation:
Change s[1]
from 'S'
to 'N'
, and s[4]
from 'E'
to 'W'
. The string s
becomes "NNWWWW"
.
The maximum Manhattan distance from the origin that can be achieved is 6. Hence, 6 is the output.
Constraints:
1 <= s.length <= 105
0 <= k <= s.length
s
consists of only'N'
,'S'
,'E'
, and'W'
.
Solutions
Solution 1: Enumeration + Greedy
We can enumerate four cases:
We define a function
We define a variable
Traverse the string
Finally, return the maximum value among the four cases.
The time complexity is
-
class Solution { private char[] s; private int k; public int maxDistance(String s, int k) { this.s = s.toCharArray(); this.k = k; int a = calc('S', 'E'); int b = calc('S', 'W'); int c = calc('N', 'E'); int d = calc('N', 'W'); return Math.max(Math.max(a, b), Math.max(c, d)); } private int calc(char a, char b) { int ans = 0, mx = 0, cnt = 0; for (char c : s) { if (c == a || c == b) { ++mx; } else if (cnt < k) { ++mx; ++cnt; } else { --mx; } ans = Math.max(ans, mx); } return ans; } }
-
class Solution { public: int maxDistance(string s, int k) { auto calc = [&](char a, char b) { int ans = 0, mx = 0, cnt = 0; for (char c : s) { if (c == a || c == b) { ++mx; } else if (cnt < k) { ++mx; ++cnt; } else { --mx; } ans = max(ans, mx); } return ans; }; int a = calc('S', 'E'); int b = calc('S', 'W'); int c = calc('N', 'E'); int d = calc('N', 'W'); return max({a, b, c, d}); } };
-
class Solution: def maxDistance(self, s: str, k: int) -> int: def calc(a: str, b: str) -> int: ans = mx = cnt = 0 for c in s: if c == a or c == b: mx += 1 elif cnt < k: cnt += 1 mx += 1 else: mx -= 1 ans = max(ans, mx) return ans a = calc("S", "E") b = calc("S", "W") c = calc("N", "E") d = calc("N", "W") return max(a, b, c, d)
-
func maxDistance(s string, k int) int { calc := func(a rune, b rune) int { var ans, mx, cnt int for _, c := range s { if c == a || c == b { mx++ } else if cnt < k { mx++ cnt++ } else { mx-- } ans = max(ans, mx) } return ans } a := calc('S', 'E') b := calc('S', 'W') c := calc('N', 'E') d := calc('N', 'W') return max(a, b, c, d) }
-
function maxDistance(s: string, k: number): number { const calc = (a: string, b: string): number => { let [ans, mx, cnt] = [0, 0, 0]; for (const c of s) { if (c === a || c === b) { ++mx; } else if (cnt < k) { ++mx; ++cnt; } else { --mx; } ans = Math.max(ans, mx); } return ans; }; const a = calc('S', 'E'); const b = calc('S', 'W'); const c = calc('N', 'E'); const d = calc('N', 'W'); return Math.max(a, b, c, d); }