Welcome to Subscribe On Youtube
3394. Check if Grid can be Cut into Sections
Description
You are given an integer n
representing the dimensions of an n x n
grid, with the origin at the bottom-left corner of the grid. You are also given a 2D array of coordinates rectangles
, where rectangles[i]
is in the form [startx, starty, endx, endy]
, representing a rectangle on the grid. Each rectangle is defined as follows:
(startx, starty)
: The bottom-left corner of the rectangle.(endx, endy)
: The top-right corner of the rectangle.
Note that the rectangles do not overlap. Your task is to determine if it is possible to make either two horizontal or two vertical cuts on the grid such that:
- Each of the three resulting sections formed by the cuts contains at least one rectangle.
- Every rectangle belongs to exactly one section.
Return true
if such cuts can be made; otherwise, return false
.
Example 1:
Input: n = 5, rectangles = [[1,0,5,2],[0,2,2,4],[3,2,5,3],[0,4,4,5]]
Output: true
Explanation:
The grid is shown in the diagram. We can make horizontal cuts at y = 2
and y = 4
. Hence, output is true.
Example 2:
Input: n = 4, rectangles = [[0,0,1,1],[2,0,3,4],[0,2,2,3],[3,0,4,3]]
Output: true
Explanation:
We can make vertical cuts at x = 2
and x = 3
. Hence, output is true.
Example 3:
Input: n = 4, rectangles = [[0,2,2,4],[1,0,3,2],[2,2,3,4],[3,0,4,2],[3,2,4,4]]
Output: false
Explanation:
We cannot make two horizontal or two vertical cuts that satisfy the conditions. Hence, output is false.
Constraints:
3 <= n <= 109
3 <= rectangles.length <= 105
0 <= rectangles[i][0] < rectangles[i][2] <= n
0 <= rectangles[i][1] < rectangles[i][3] <= n
- No two rectangles overlap.
Solutions
Solution 1
-
class Solution { // Helper class to mimic C++ pair<int, int> static class Pair { int value; int type; Pair(int value, int type) { this.value = value; this.type = type; } } private boolean countLineIntersections(List<Pair> coordinates) { int lines = 0; int overlap = 0; for (Pair coord : coordinates) { if (coord.type == 0) { overlap--; } else { overlap++; } if (overlap == 0) { lines++; } } return lines >= 3; } public boolean checkValidCuts(int n, int[][] rectangles) { List<Pair> yCoordinates = new ArrayList<>(); List<Pair> xCoordinates = new ArrayList<>(); for (int[] rectangle : rectangles) { // rectangle = [x1, y1, x2, y2] yCoordinates.add(new Pair(rectangle[1], 1)); // y1, start yCoordinates.add(new Pair(rectangle[3], 0)); // y2, end xCoordinates.add(new Pair(rectangle[0], 1)); // x1, start xCoordinates.add(new Pair(rectangle[2], 0)); // x2, end } Comparator<Pair> comparator = (a, b) -> { if (a.value != b.value) return Integer.compare(a.value, b.value); return Integer.compare(a.type, b.type); // End (0) before Start (1) }; Collections.sort(yCoordinates, comparator); Collections.sort(xCoordinates, comparator); return countLineIntersections(yCoordinates) || countLineIntersections(xCoordinates); } }
-
class Solution { #define pii pair<int, int> bool countLineIntersections(vector<pii>& coordinates) { int lines = 0; int overlap = 0; for (int i = 0; i < coordinates.size(); ++i) { if (coordinates[i].second == 0) overlap--; else overlap++; if (overlap == 0) lines++; } return lines >= 3; } public: bool checkValidCuts(int n, vector<vector<int>>& rectangles) { vector<pii> y_cordinates, x_cordinates; for (auto& rectangle : rectangles) { y_cordinates.push_back(make_pair(rectangle[1], 1)); y_cordinates.push_back(make_pair(rectangle[3], 0)); x_cordinates.push_back(make_pair(rectangle[0], 1)); x_cordinates.push_back(make_pair(rectangle[2], 0)); } sort(y_cordinates.begin(), y_cordinates.end()); sort(x_cordinates.begin(), x_cordinates.end()); // Line-Sweep on x and y cordinates return (countLineIntersections(y_cordinates) or countLineIntersections(x_cordinates)); } };
-
class Solution: def countLineIntersections(self, coordinates: List[tuple[int, int]]) -> bool: lines = 0 overlap = 0 for value, marker in coordinates: if marker == 0: overlap -= 1 else: overlap += 1 if overlap == 0: lines += 1 return lines >= 3 def checkValidCuts(self, n: int, rectangles: List[List[int]]) -> bool: y_coordinates = [] x_coordinates = [] for rect in rectangles: x1, y1, x2, y2 = rect y_coordinates.append((y1, 1)) # start y_coordinates.append((y2, 0)) # end x_coordinates.append((x1, 1)) # start x_coordinates.append((x2, 0)) # end # Sort by coordinate value, and for tie, put end (0) before start (1) y_coordinates.sort(key=lambda x: (x[0], x[1])) x_coordinates.sort(key=lambda x: (x[0], x[1])) return self.countLineIntersections( y_coordinates ) or self.countLineIntersections(x_coordinates)
-
type Pair struct { val int typ int // 1 = start, 0 = end } func countLineIntersections(coords []Pair) bool { lines := 0 overlap := 0 for _, p := range coords { if p.typ == 0 { overlap-- } else { overlap++ } if overlap == 0 { lines++ } } return lines >= 3 } func checkValidCuts(n int, rectangles [][]int) bool { var xCoords []Pair var yCoords []Pair for _, rect := range rectangles { x1, y1, x2, y2 := rect[0], rect[1], rect[2], rect[3] yCoords = append(yCoords, Pair{y1, 1}) // start yCoords = append(yCoords, Pair{y2, 0}) // end xCoords = append(xCoords, Pair{x1, 1}) xCoords = append(xCoords, Pair{x2, 0}) } sort.Slice(yCoords, func(i, j int) bool { if yCoords[i].val == yCoords[j].val { return yCoords[i].typ < yCoords[j].typ // end before start } return yCoords[i].val < yCoords[j].val }) sort.Slice(xCoords, func(i, j int) bool { if xCoords[i].val == xCoords[j].val { return xCoords[i].typ < xCoords[j].typ } return xCoords[i].val < xCoords[j].val }) return countLineIntersections(yCoords) || countLineIntersections(xCoords) }
-
function checkValidCuts(n: number, rectangles: number[][]): boolean { const check = (arr: number[][], getVals: (x: number[]) => number[]) => { let [c, longest] = [3, 0]; for (const x of arr) { const [start, end] = getVals(x); if (start < longest) { longest = Math.max(longest, end); } else { longest = end; if (--c === 0) return true; } } return false; }; const sortByX = ([a]: number[], [b]: number[]) => a - b; const sortByY = ([, a]: number[], [, b]: number[]) => a - b; const getX = ([x1, , x2]: number[]) => [x1, x2]; const getY = ([, y1, , y2]: number[]) => [y1, y2]; return check(rectangles.toSorted(sortByX), getX) || check(rectangles.toSorted(sortByY), getY); }
-
function checkValidCuts(n, rectangles) { const check = (arr, getVals) => { let [c, longest] = [3, 0]; for (const x of arr) { const [start, end] = getVals(x); if (start < longest) { longest = Math.max(longest, end); } else { longest = end; if (--c === 0) return true; } } return false; }; const sortByX = ([a], [b]) => a - b; const sortByY = ([, a], [, b]) => a - b; const getX = ([x1, , x2]) => [x1, x2]; const getY = ([, y1, , y2]) => [y1, y2]; return check(rectangles.toSorted(sortByX), getX) || check(rectangles.toSorted(sortByY), getY); }