Welcome to Subscribe On Youtube
3365. Rearrange K Substrings to Form Target String
Description
You are given two strings s
and t
, both of which are anagrams of each other, and an integer k
.
Your task is to determine whether it is possible to split the string s
into k
equal-sized substrings, rearrange the substrings, and concatenate them in any order to create a new string that matches the given string t
.
Return true
if this is possible, otherwise, return false
.
An anagram is a word or phrase formed by rearranging the letters of a different word or phrase, using all the original letters exactly once.
A substring is a contiguous non-empty sequence of characters within a string.
Example 1:
Input: s = "abcd", t = "cdab", k = 2
Output: true
Explanation:
- Split
s
into 2 substrings of length 2:["ab", "cd"]
. - Rearranging these substrings as
["cd", "ab"]
, and then concatenating them results in"cdab"
, which matchest
.
Example 2:
Input: s = "aabbcc", t = "bbaacc", k = 3
Output: true
Explanation:
- Split
s
into 3 substrings of length 2:["aa", "bb", "cc"]
. - Rearranging these substrings as
["bb", "aa", "cc"]
, and then concatenating them results in"bbaacc"
, which matchest
.
Example 3:
Input: s = "aabbcc", t = "bbaacc", k = 2
Output: false
Explanation:
- Split
s
into 2 substrings of length 3:["aab", "bcc"]
. - These substrings cannot be rearranged to form
t = "bbaacc"
, so the output isfalse
.
Constraints:
1 <= s.length == t.length <= 2 * 105
1 <= k <= s.length
s.length
is divisible byk
.s
andt
consist only of lowercase English letters.- The input is generated such that
s
andt
are anagrams of each other.
Solutions
Solution 1: Hash Table
Let the length of the string $s$ be $n$, then the length of each substring is $m = n / k$.
We use a hash table $\textit{cnt}$ to record the difference between the number of occurrences of each substring of length $m$ in string $s$ and in string $t$.
We traverse the string $s$, extracting substrings of length $m$ each time, and update the hash table $\textit{cnt}$.
Finally, we check whether all values in the hash table $\textit{cnt}$ are $0$.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the string $s$.
-
class Solution { public boolean isPossibleToRearrange(String s, String t, int k) { Map<String, Integer> cnt = new HashMap<>(k); int n = s.length(); int m = n / k; for (int i = 0; i < n; i += m) { cnt.merge(s.substring(i, i + m), 1, Integer::sum); cnt.merge(t.substring(i, i + m), -1, Integer::sum); } for (int v : cnt.values()) { if (v != 0) { return false; } } return true; } }
-
class Solution { public: bool isPossibleToRearrange(string s, string t, int k) { unordered_map<string, int> cnt; int n = s.size(); int m = n / k; for (int i = 0; i < n; i += m) { cnt[s.substr(i, m)]++; cnt[t.substr(i, m)]--; } for (auto& [_, v] : cnt) { if (v) { return false; } } return true; } };
-
class Solution: def isPossibleToRearrange(self, s: str, t: str, k: int) -> bool: cnt = Counter() n = len(s) m = n // k for i in range(0, n, m): cnt[s[i : i + m]] += 1 cnt[t[i : i + m]] -= 1 return all(v == 0 for v in cnt.values())
-
func isPossibleToRearrange(s string, t string, k int) bool { n := len(s) m := n / k cnt := map[string]int{} for i := 0; i < n; i += m { cnt[s[i:i+m]]++ cnt[t[i:i+m]]-- } for _, v := range cnt { if v != 0 { return false } } return true }
-
function isPossibleToRearrange(s: string, t: string, k: number): boolean { const cnt: Record<string, number> = {}; const n = s.length; const m = Math.floor(n / k); for (let i = 0; i < n; i += m) { const a = s.slice(i, i + m); cnt[a] = (cnt[a] || 0) + 1; const b = t.slice(i, i + m); cnt[b] = (cnt[b] || 0) - 1; } return Object.values(cnt).every(x => x === 0); }