Welcome to Subscribe On Youtube
3352. Count K-Reducible Numbers Less Than N
Description
You are given a binary string s
representing a number n
in its binary form.
You are also given an integer k
.
An integer x
is called k-reducible if performing the following operation at most k
times reduces it to 1:
- Replace
x
with the count of set bits in its binary representation.
For example, the binary representation of 6 is "110"
. Applying the operation once reduces it to 2 (since "110"
has two set bits). Applying the operation again to 2 (binary "10"
) reduces it to 1 (since "10"
has one set bit).
Return an integer denoting the number of positive integers less than n
that are k-reducible.
Since the answer may be too large, return it modulo 109 + 7
.
Example 1:
Input: s = "111", k = 1
Output: 3
Explanation:
n = 7
. The 1-reducible integers less than 7 are 1, 2, and 4.
Example 2:
Input: s = "1000", k = 2
Output: 6
Explanation:
n = 8
. The 2-reducible integers less than 8 are 1, 2, 3, 4, 5, and 6.
Example 3:
Input: s = "1", k = 3
Output: 0
Explanation:
There are no positive integers less than n = 1
, so the answer is 0.
Constraints:
1 <= s.length <= 800
s
has no leading zeros.s
consists only of the characters'0'
and'1'
.1 <= k <= 5