Welcome to Subscribe On Youtube
3350. Adjacent Increasing Subarrays Detection II
Description
Given an array nums
of n
integers, your task is to find the maximum value of k
for which there exist two adjacent subarrays of length k
each, such that both subarrays are strictly increasing. Specifically, check if there are two subarrays of length k
starting at indices a
and b
(a < b
), where:
- Both subarrays
nums[a..a + k - 1]
andnums[b..b + k - 1]
are strictly increasing. - The subarrays must be adjacent, meaning
b = a + k
.
Return the maximum possible value of k
.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [2,5,7,8,9,2,3,4,3,1]
Output: 3
Explanation:
- The subarray starting at index 2 is
[7, 8, 9]
, which is strictly increasing. - The subarray starting at index 5 is
[2, 3, 4]
, which is also strictly increasing. - These two subarrays are adjacent, and 3 is the maximum possible value of
k
for which two such adjacent strictly increasing subarrays exist.
Example 2:
Input: nums = [1,2,3,4,4,4,4,5,6,7]
Output: 2
Explanation:
- The subarray starting at index 0 is
[1, 2]
, which is strictly increasing. - The subarray starting at index 2 is
[3, 4]
, which is also strictly increasing. - These two subarrays are adjacent, and 2 is the maximum possible value of
k
for which two such adjacent strictly increasing subarrays exist.
Constraints:
2 <= nums.length <= 2 * 105
-109 <= nums[i] <= 109
Solutions
Solution 1
-
class Solution { public int maxIncreasingSubarrays(List<Integer> nums) { int ans = 0, pre = 0, cur = 0; int n = nums.size(); for (int i = 0; i < n; ++i) { ++cur; if (i == n - 1 || nums.get(i) >= nums.get(i + 1)) { ans = Math.max(ans, Math.max(cur / 2, Math.min(pre, cur))); pre = cur; cur = 0; } } return ans; } }
-
class Solution { public: int maxIncreasingSubarrays(vector<int>& nums) { int ans = 0, pre = 0, cur = 0; int n = nums.size(); for (int i = 0; i < n; ++i) { ++cur; if (i == n - 1 || nums[i] >= nums[i + 1]) { ans = max({ans, cur / 2, min(pre, cur)}); pre = cur; cur = 0; } } return ans; } };
-
class Solution: def maxIncreasingSubarrays(self, nums: List[int]) -> int: ans = pre = cur = 0 for i, x in enumerate(nums): cur += 1 if i == len(nums) - 1 or x >= nums[i + 1]: ans = max(ans, cur // 2, min(pre, cur)) pre, cur = cur, 0 return ans
-
func maxIncreasingSubarrays(nums []int) (ans int) { pre, cur := 0, 0 for i, x := range nums { cur++ if i == len(nums)-1 || x >= nums[i+1] { ans = max(ans, max(cur/2, min(pre, cur))) pre, cur = cur, 0 } } return }
-
function maxIncreasingSubarrays(nums: number[]): number { let [ans, pre, cur] = [0, 0, 0]; const n = nums.length; for (let i = 0; i < n; ++i) { ++cur; if (i === n - 1 || nums[i] >= nums[i + 1]) { ans = Math.max(ans, (cur / 2) | 0, Math.min(pre, cur)); [pre, cur] = [cur, 0]; } } return ans; }