Welcome to Subscribe On Youtube

3350. Adjacent Increasing Subarrays Detection II

Description

Given an array nums of n integers, your task is to find the maximum value of k for which there exist two adjacent subarrays of length k each, such that both subarrays are strictly increasing. Specifically, check if there are two subarrays of length k starting at indices a and b (a < b), where:

  • Both subarrays nums[a..a + k - 1] and nums[b..b + k - 1] are strictly increasing.
  • The subarrays must be adjacent, meaning b = a + k.

Return the maximum possible value of k.

A subarray is a contiguous non-empty sequence of elements within an array.

 

Example 1:

Input: nums = [2,5,7,8,9,2,3,4,3,1]

Output: 3

Explanation:

  • The subarray starting at index 2 is [7, 8, 9], which is strictly increasing.
  • The subarray starting at index 5 is [2, 3, 4], which is also strictly increasing.
  • These two subarrays are adjacent, and 3 is the maximum possible value of k for which two such adjacent strictly increasing subarrays exist.

Example 2:

Input: nums = [1,2,3,4,4,4,4,5,6,7]

Output: 2

Explanation:

  • The subarray starting at index 0 is [1, 2], which is strictly increasing.
  • The subarray starting at index 2 is [3, 4], which is also strictly increasing.
  • These two subarrays are adjacent, and 2 is the maximum possible value of k for which two such adjacent strictly increasing subarrays exist.

 

Constraints:

  • 2 <= nums.length <= 2 * 105
  • -109 <= nums[i] <= 109

Solutions

Solution 1

  • class Solution {
        public int maxIncreasingSubarrays(List<Integer> nums) {
            int ans = 0, pre = 0, cur = 0;
            int n = nums.size();
            for (int i = 0; i < n; ++i) {
                ++cur;
                if (i == n - 1 || nums.get(i) >= nums.get(i + 1)) {
                    ans = Math.max(ans, Math.max(cur / 2, Math.min(pre, cur)));
                    pre = cur;
                    cur = 0;
                }
            }
            return ans;
        }
    }
    
    
  • class Solution {
    public:
        int maxIncreasingSubarrays(vector<int>& nums) {
            int ans = 0, pre = 0, cur = 0;
            int n = nums.size();
            for (int i = 0; i < n; ++i) {
                ++cur;
                if (i == n - 1 || nums[i] >= nums[i + 1]) {
                    ans = max({ans, cur / 2, min(pre, cur)});
                    pre = cur;
                    cur = 0;
                }
            }
            return ans;
        }
    };
    
    
  • class Solution:
        def maxIncreasingSubarrays(self, nums: List[int]) -> int:
            ans = pre = cur = 0
            for i, x in enumerate(nums):
                cur += 1
                if i == len(nums) - 1 or x >= nums[i + 1]:
                    ans = max(ans, cur // 2, min(pre, cur))
                    pre, cur = cur, 0
            return ans
    
    
  • func maxIncreasingSubarrays(nums []int) (ans int) {
    	pre, cur := 0, 0
    	for i, x := range nums {
    		cur++
    		if i == len(nums)-1 || x >= nums[i+1] {
    			ans = max(ans, max(cur/2, min(pre, cur)))
    			pre, cur = cur, 0
    		}
    	}
    	return
    }
    
    
  • function maxIncreasingSubarrays(nums: number[]): number {
        let [ans, pre, cur] = [0, 0, 0];
        const n = nums.length;
        for (let i = 0; i < n; ++i) {
            ++cur;
            if (i === n - 1 || nums[i] >= nums[i + 1]) {
                ans = Math.max(ans, (cur / 2) | 0, Math.min(pre, cur));
                [pre, cur] = [cur, 0];
            }
        }
        return ans;
    }
    
    

All Problems

All Solutions