Welcome to Subscribe On Youtube
3350. Adjacent Increasing Subarrays Detection II
Description
Given an array nums of n integers, your task is to find the maximum value of k for which there exist two adjacent subarrays of length k each, such that both subarrays are strictly increasing. Specifically, check if there are two subarrays of length k starting at indices a and b (a < b), where:
- Both subarrays
nums[a..a + k - 1]andnums[b..b + k - 1]are strictly increasing. - The subarrays must be adjacent, meaning
b = a + k.
Return the maximum possible value of k.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [2,5,7,8,9,2,3,4,3,1]
Output: 3
Explanation:
- The subarray starting at index 2 is
[7, 8, 9], which is strictly increasing. - The subarray starting at index 5 is
[2, 3, 4], which is also strictly increasing. - These two subarrays are adjacent, and 3 is the maximum possible value of
kfor which two such adjacent strictly increasing subarrays exist.
Example 2:
Input: nums = [1,2,3,4,4,4,4,5,6,7]
Output: 2
Explanation:
- The subarray starting at index 0 is
[1, 2], which is strictly increasing. - The subarray starting at index 2 is
[3, 4], which is also strictly increasing. - These two subarrays are adjacent, and 2 is the maximum possible value of
kfor which two such adjacent strictly increasing subarrays exist.
Constraints:
2 <= nums.length <= 2 * 105-109 <= nums[i] <= 109
Solutions
Solution 1
-
class Solution { public int maxIncreasingSubarrays(List<Integer> nums) { int ans = 0, pre = 0, cur = 0; int n = nums.size(); for (int i = 0; i < n; ++i) { ++cur; if (i == n - 1 || nums.get(i) >= nums.get(i + 1)) { ans = Math.max(ans, Math.max(cur / 2, Math.min(pre, cur))); pre = cur; cur = 0; } } return ans; } } -
class Solution { public: int maxIncreasingSubarrays(vector<int>& nums) { int ans = 0, pre = 0, cur = 0; int n = nums.size(); for (int i = 0; i < n; ++i) { ++cur; if (i == n - 1 || nums[i] >= nums[i + 1]) { ans = max({ans, cur / 2, min(pre, cur)}); pre = cur; cur = 0; } } return ans; } }; -
class Solution: def maxIncreasingSubarrays(self, nums: List[int]) -> int: ans = pre = cur = 0 for i, x in enumerate(nums): cur += 1 if i == len(nums) - 1 or x >= nums[i + 1]: ans = max(ans, cur // 2, min(pre, cur)) pre, cur = cur, 0 return ans -
func maxIncreasingSubarrays(nums []int) (ans int) { pre, cur := 0, 0 for i, x := range nums { cur++ if i == len(nums)-1 || x >= nums[i+1] { ans = max(ans, max(cur/2, min(pre, cur))) pre, cur = cur, 0 } } return } -
function maxIncreasingSubarrays(nums: number[]): number { let [ans, pre, cur] = [0, 0, 0]; const n = nums.length; for (let i = 0; i < n; ++i) { ++cur; if (i === n - 1 || nums[i] >= nums[i + 1]) { ans = Math.max(ans, (cur / 2) | 0, Math.min(pre, cur)); [pre, cur] = [cur, 0]; } } return ans; } -
/** * @param {number[]} nums * @return {number} */ var maxIncreasingSubarrays = function (nums) { let [ans, pre, cur] = [0, 0, 0]; const n = nums.length; for (let i = 0; i < n; ++i) { ++cur; if (i === n - 1 || nums[i] >= nums[i + 1]) { ans = Math.max(ans, cur >> 1, Math.min(pre, cur)); [pre, cur] = [cur, 0]; } } return ans; }; -
impl Solution { pub fn max_increasing_subarrays(nums: Vec<i32>) -> i32 { let n = nums.len(); let (mut ans, mut pre, mut cur) = (0, 0, 0); for i in 0..n { cur += 1; if i == n - 1 || nums[i] >= nums[i + 1] { ans = ans.max(cur / 2).max(pre.min(cur)); pre = cur; cur = 0; } } ans } }