Welcome to Subscribe On Youtube

3349. Adjacent Increasing Subarrays Detection I

Description

Given an array nums of n integers and an integer k, determine whether there exist two adjacent subarrays of length k such that both subarrays are strictly increasing. Specifically, check if there are two subarrays starting at indices a and b (a < b), where:

  • Both subarrays nums[a..a + k - 1] and nums[b..b + k - 1] are strictly increasing.
  • The subarrays must be adjacent, meaning b = a + k.

Return true if it is possible to find two such subarrays, and false otherwise.

 

Example 1:

Input: nums = [2,5,7,8,9,2,3,4,3,1], k = 3

Output: true

Explanation:

  • The subarray starting at index 2 is [7, 8, 9], which is strictly increasing.
  • The subarray starting at index 5 is [2, 3, 4], which is also strictly increasing.
  • These two subarrays are adjacent, so the result is true.

Example 2:

Input: nums = [1,2,3,4,4,4,4,5,6,7], k = 5

Output: false

 

Constraints:

  • 2 <= nums.length <= 100
  • 1 < 2 * k <= nums.length
  • -1000 <= nums[i] <= 1000

Solutions

Solution 1

  • class Solution {
        public boolean hasIncreasingSubarrays(List<Integer> nums, int k) {
            int mx = 0, pre = 0, cur = 0;
            int n = nums.size();
            for (int i = 0; i < n; ++i) {
                ++cur;
                if (i == n - 1 || nums.get(i) >= nums.get(i + 1)) {
                    mx = Math.max(mx, Math.max(cur / 2, Math.min(pre, cur)));
                    pre = cur;
                    cur = 0;
                }
            }
            return mx >= k;
        }
    }
    
    
  • class Solution {
    public:
        bool hasIncreasingSubarrays(vector<int>& nums, int k) {
            int mx = 0, pre = 0, cur = 0;
            int n = nums.size();
            for (int i = 0; i < n; ++i) {
                ++cur;
                if (i == n - 1 || nums[i] >= nums[i + 1]) {
                    mx = max({mx, cur / 2, min(pre, cur)});
                    pre = cur;
                    cur = 0;
                }
            }
            return mx >= k;
        }
    };
    
    
  • class Solution:
        def hasIncreasingSubarrays(self, nums: List[int], k: int) -> bool:
            mx = pre = cur = 0
            for i, x in enumerate(nums):
                cur += 1
                if i == len(nums) - 1 or x >= nums[i + 1]:
                    mx = max(mx, cur // 2, min(pre, cur))
                    pre, cur = cur, 0
            return mx >= k
    
    
  • func hasIncreasingSubarrays(nums []int, k int) bool {
    	mx, pre, cur := 0, 0, 0
    	for i, x := range nums {
    		cur++
    		if i == len(nums)-1 || x >= nums[i+1] {
    			mx = max(mx, max(cur/2, min(pre, cur)))
    			pre, cur = cur, 0
    		}
    	}
    	return mx >= k
    }
    
    
  • function hasIncreasingSubarrays(nums: number[], k: number): boolean {
        let [mx, pre, cur] = [0, 0, 0];
        const n = nums.length;
        for (let i = 0; i < n; ++i) {
            ++cur;
            if (i === n - 1 || nums[i] >= nums[i + 1]) {
                mx = Math.max(mx, (cur / 2) | 0, Math.min(pre, cur));
                [pre, cur] = [cur, 0];
            }
        }
        return mx >= k;
    }
    
    

All Problems

All Solutions