Welcome to Subscribe On Youtube
3349. Adjacent Increasing Subarrays Detection I
Description
Given an array nums of n integers and an integer k, determine whether there exist two adjacent subarrays of length k such that both subarrays are strictly increasing. Specifically, check if there are two subarrays starting at indices a and b (a < b), where:
- Both subarrays
nums[a..a + k - 1]andnums[b..b + k - 1]are strictly increasing. - The subarrays must be adjacent, meaning
b = a + k.
Return true if it is possible to find two such subarrays, and false otherwise.
Example 1:
Input: nums = [2,5,7,8,9,2,3,4,3,1], k = 3
Output: true
Explanation:
- The subarray starting at index
2is[7, 8, 9], which is strictly increasing. - The subarray starting at index
5is[2, 3, 4], which is also strictly increasing. - These two subarrays are adjacent, so the result is
true.
Example 2:
Input: nums = [1,2,3,4,4,4,4,5,6,7], k = 5
Output: false
Constraints:
2 <= nums.length <= 1001 < 2 * k <= nums.length-1000 <= nums[i] <= 1000
Solutions
Solution 1
-
class Solution { public boolean hasIncreasingSubarrays(List<Integer> nums, int k) { int mx = 0, pre = 0, cur = 0; int n = nums.size(); for (int i = 0; i < n; ++i) { ++cur; if (i == n - 1 || nums.get(i) >= nums.get(i + 1)) { mx = Math.max(mx, Math.max(cur / 2, Math.min(pre, cur))); pre = cur; cur = 0; } } return mx >= k; } } -
class Solution { public: bool hasIncreasingSubarrays(vector<int>& nums, int k) { int mx = 0, pre = 0, cur = 0; int n = nums.size(); for (int i = 0; i < n; ++i) { ++cur; if (i == n - 1 || nums[i] >= nums[i + 1]) { mx = max({mx, cur / 2, min(pre, cur)}); pre = cur; cur = 0; } } return mx >= k; } }; -
class Solution: def hasIncreasingSubarrays(self, nums: List[int], k: int) -> bool: mx = pre = cur = 0 for i, x in enumerate(nums): cur += 1 if i == len(nums) - 1 or x >= nums[i + 1]: mx = max(mx, cur // 2, min(pre, cur)) pre, cur = cur, 0 return mx >= k -
func hasIncreasingSubarrays(nums []int, k int) bool { mx, pre, cur := 0, 0, 0 for i, x := range nums { cur++ if i == len(nums)-1 || x >= nums[i+1] { mx = max(mx, max(cur/2, min(pre, cur))) pre, cur = cur, 0 } } return mx >= k } -
function hasIncreasingSubarrays(nums: number[], k: number): boolean { let [mx, pre, cur] = [0, 0, 0]; const n = nums.length; for (let i = 0; i < n; ++i) { ++cur; if (i === n - 1 || nums[i] >= nums[i + 1]) { mx = Math.max(mx, (cur / 2) | 0, Math.min(pre, cur)); [pre, cur] = [cur, 0]; } } return mx >= k; } -
/** * @param {number[]} nums * @param {number} k * @return {boolean} */ var hasIncreasingSubarrays = function (nums, k) { const n = nums.length; let [mx, pre, cur] = [0, 0, 0]; for (let i = 0; i < n; ++i) { ++cur; if (i === n - 1 || nums[i] >= nums[i + 1]) { mx = Math.max(mx, cur >> 1, Math.min(pre, cur)); pre = cur; cur = 0; } } return mx >= k; }; -
impl Solution { pub fn has_increasing_subarrays(nums: Vec<i32>, k: i32) -> bool { let n = nums.len(); let (mut mx, mut pre, mut cur) = (0, 0, 0); for i in 0..n { cur += 1; if i == n - 1 || nums[i] >= nums[i + 1] { mx = mx.max(cur / 2).max(pre.min(cur)); pre = cur; cur = 0; } } mx >= k } }