Welcome to Subscribe On Youtube
3306. Count of Substrings Containing Every Vowel and K Consonants II
Description
You are given a string word
and a non-negative integer k
.
Return the total number of substrings of word
that contain every vowel ('a'
, 'e'
, 'i'
, 'o'
, and 'u'
) at least once and exactly k
consonants.
Example 1:
Input: word = "aeioqq", k = 1
Output: 0
Explanation:
There is no substring with every vowel.
Example 2:
Input: word = "aeiou", k = 0
Output: 1
Explanation:
The only substring with every vowel and zero consonants is word[0..4]
, which is "aeiou"
.
Example 3:
Input: word = "ieaouqqieaouqq", k = 1
Output: 3
Explanation:
The substrings with every vowel and one consonant are:
word[0..5]
, which is"ieaouq"
.word[6..11]
, which is"qieaou"
.word[7..12]
, which is"ieaouq"
.
Constraints:
5 <= word.length <= 2 * 105
word
consists only of lowercase English letters.0 <= k <= word.length - 5
Solutions
Solution 1: Problem Transformation + Sliding Window
We can transform the problem into solving the following two subproblems:
- Find the total number of substrings where each vowel appears at least once and contains at least $k$ consonants, denoted as $\textit{f}(k)$;
- Find the total number of substrings where each vowel appears at least once and contains at least $k + 1$ consonants, denoted as $\textit{f}(k + 1)$.
Then the answer is $\textit{f}(k) - \textit{f}(k + 1)$.
Therefore, we design a function $\textit{f}(k)$ to count the total number of substrings where each vowel appears at least once and contains at least $k$ consonants.
We can use a hash table $\textit{cnt}$ to count the occurrences of each vowel, a variable $\textit{ans}$ to store the answer, a variable $\textit{l}$ to record the left boundary of the sliding window, and a variable $\textit{x}$ to record the number of consonants in the current window.
Traverse the string. If the current character is a vowel, add it to the hash table $\textit{cnt}$; otherwise, increment $\textit{x}$ by one. If $\textit{x} \ge k$ and the size of the hash table $\textit{cnt}$ is $5$, it means the current window meets the conditions. We then move the left boundary in a loop until the window no longer meets the conditions. At this point, all substrings ending at the right boundary $\textit{r}$ and with the left boundary in the range $[0, .. \textit{l} - 1]$ meet the conditions, totaling $\textit{l}$ substrings. We add $\textit{l}$ to the answer. Continue traversing the string until the end, and we get $\textit{f}(k)$.
Finally, we return $\textit{f}(k) - \textit{f}(k + 1)$.
The time complexity is $O(n)$, where $n$ is the length of the string $\textit{word}$. The space complexity is $O(1)$.
-
class Solution { public long countOfSubstrings(String word, int k) { return f(word, k) - f(word, k + 1); } private long f(String word, int k) { long ans = 0; int l = 0, x = 0; Map<Character, Integer> cnt = new HashMap<>(5); for (char c : word.toCharArray()) { if (vowel(c)) { cnt.merge(c, 1, Integer::sum); } else { ++x; } while (x >= k && cnt.size() == 5) { char d = word.charAt(l++); if (vowel(d)) { if (cnt.merge(d, -1, Integer::sum) == 0) { cnt.remove(d); } } else { --x; } } ans += l; } return ans; } private boolean vowel(char c) { return c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u'; } }
-
class Solution { public: long long countOfSubstrings(string word, int k) { auto f = [&](int k) -> long long { long long ans = 0; int l = 0, x = 0; unordered_map<char, int> cnt; auto vowel = [&](char c) -> bool { return c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u'; }; for (char c : word) { if (vowel(c)) { cnt[c]++; } else { ++x; } while (x >= k && cnt.size() == 5) { char d = word[l++]; if (vowel(d)) { if (--cnt[d] == 0) { cnt.erase(d); } } else { --x; } } ans += l; } return ans; }; return f(k) - f(k + 1); } };
-
class Solution: def countOfSubstrings(self, word: str, k: int) -> int: def f(k: int) -> int: cnt = Counter() ans = l = x = 0 for c in word: if c in "aeiou": cnt[c] += 1 else: x += 1 while x >= k and len(cnt) == 5: d = word[l] if d in "aeiou": cnt[d] -= 1 if cnt[d] == 0: cnt.pop(d) else: x -= 1 l += 1 ans += l return ans return f(k) - f(k + 1)
-
func countOfSubstrings(word string, k int) int64 { f := func(k int) int64 { var ans int64 = 0 l, x := 0, 0 cnt := make(map[rune]int) vowel := func(c rune) bool { return c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u' } for _, c := range word { if vowel(c) { cnt[c]++ } else { x++ } for x >= k && len(cnt) == 5 { d := rune(word[l]) l++ if vowel(d) { cnt[d]-- if cnt[d] == 0 { delete(cnt, d) } } else { x-- } } ans += int64(l) } return ans } return f(k) - f(k+1) }
-
function countOfSubstrings(word: string, k: number): number { const f = (k: number): number => { let ans = 0; let l = 0, x = 0; const cnt = new Map<string, number>(); const vowel = (c: string): boolean => { return c === 'a' || c === 'e' || c === 'i' || c === 'o' || c === 'u'; }; for (const c of word) { if (vowel(c)) { cnt.set(c, (cnt.get(c) || 0) + 1); } else { x++; } while (x >= k && cnt.size === 5) { const d = word[l++]; if (vowel(d)) { cnt.set(d, cnt.get(d)! - 1); if (cnt.get(d) === 0) { cnt.delete(d); } } else { x--; } } ans += l; } return ans; }; return f(k) - f(k + 1); }