Welcome to Subscribe On Youtube
3290. Maximum Multiplication Score
Description
You are given an integer array a
of size 4 and another integer array b
of size at least 4.
You need to choose 4 indices i0
, i1
, i2
, and i3
from the array b
such that i0 < i1 < i2 < i3
. Your score will be equal to the value a[0] * b[i0] + a[1] * b[i1] + a[2] * b[i2] + a[3] * b[i3]
.
Return the maximum score you can achieve.
Example 1:
Input: a = [3,2,5,6], b = [2,-6,4,-5,-3,2,-7]
Output: 26
Explanation:
We can choose the indices 0, 1, 2, and 5. The score will be 3 * 2 + 2 * (-6) + 5 * 4 + 6 * 2 = 26
.
Example 2:
Input: a = [-1,4,5,-2], b = [-5,-1,-3,-2,-4]
Output: -1
Explanation:
We can choose the indices 0, 1, 3, and 4. The score will be (-1) * (-5) + 4 * (-1) + 5 * (-2) + (-2) * (-4) = -1
.
Constraints:
a.length == 4
4 <= b.length <= 105
-105 <= a[i], b[i] <= 105
Solutions
Solution 1: Memoization
We design a function $\textit{dfs}(i, j)$, which represents the maximum score that can be obtained starting from the $i$-th element of array $a$ and the $j$-th element of array $b$. Then the answer is $\textit{dfs}(0, 0)$.
The function $\textit{dfs}(i, j)$ is calculated as follows:
- If $j \geq \text{len}(b)$, it means array $b$ has been completely traversed. At this point, if array $a$ has also been completely traversed, return $0$; otherwise, return negative infinity.
- If $i \geq \text{len}(a)$, it means array $a$ has been completely traversed. Return $0$.
- Otherwise, we can either skip the $j$-th element of array $b$ and move to the next element, i.e., $\textit{dfs}(i, j + 1)$; or we can choose the $j$-th element of array $b$, in which case the score is $a[i] \times b[j]$ plus $\textit{dfs}(i + 1, j + 1)$. We take the maximum of these two values as the return value of $\textit{dfs}(i, j)$.
We can use memoization to avoid redundant calculations.
The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the lengths of arrays $a$ and $b$, respectively.
-
class Solution { private Long[][] f; private int[] a; private int[] b; public long maxScore(int[] a, int[] b) { f = new Long[a.length][b.length]; this.a = a; this.b = b; return dfs(0, 0); } private long dfs(int i, int j) { if (j >= b.length) { return i >= a.length ? 0 : Long.MIN_VALUE / 2; } if (i >= a.length) { return 0; } if (f[i][j] != null) { return f[i][j]; } return f[i][j] = Math.max(dfs(i, j + 1), 1L * a[i] * b[j] + dfs(i + 1, j + 1)); } }
-
class Solution { public: long long maxScore(vector<int>& a, vector<int>& b) { int m = a.size(), n = b.size(); long long f[m][n]; memset(f, -1, sizeof(f)); auto dfs = [&](auto&& dfs, int i, int j) -> long long { if (j >= n) { return i >= m ? 0 : LLONG_MIN / 2; } if (i >= m) { return 0; } if (f[i][j] != -1) { return f[i][j]; } return f[i][j] = max(dfs(dfs, i, j + 1), 1LL * a[i] * b[j] + dfs(dfs, i + 1, j + 1)); }; return dfs(dfs, 0, 0); } };
-
class Solution: def maxScore(self, a: List[int], b: List[int]) -> int: @cache def dfs(i: int, j: int) -> int: if j >= len(b): return 0 if i >= len(a) else -inf if i >= len(a): return 0 return max(dfs(i, j + 1), a[i] * b[j] + dfs(i + 1, j + 1)) return dfs(0, 0)
-
func maxScore(a []int, b []int) int64 { m, n := len(a), len(b) f := make([][]int64, m) for i := range f { f[i] = make([]int64, n) for j := range f[i] { f[i][j] = -1 } } var dfs func(i, j int) int64 dfs = func(i, j int) int64 { if j >= n { if i >= m { return 0 } return math.MinInt64 / 2 } if i >= m { return 0 } if f[i][j] != -1 { return f[i][j] } f[i][j] = max(dfs(i, j+1), int64(a[i])*int64(b[j])+dfs(i+1, j+1)) return f[i][j] } return dfs(0, 0) }
-
function maxScore(a: number[], b: number[]): number { const [m, n] = [a.length, b.length]; const f: number[][] = Array.from({ length: m }, () => Array(n).fill(-1)); const dfs = (i: number, j: number): number => { if (j >= n) { return i >= m ? 0 : -Infinity; } if (i >= m) { return 0; } if (f[i][j] !== -1) { return f[i][j]; } return (f[i][j] = Math.max(dfs(i, j + 1), a[i] * b[j] + dfs(i + 1, j + 1))); }; return dfs(0, 0); }