Welcome to Subscribe On Youtube
3284. Sum of Consecutive Subarrays 🔒
Description
We call an array arr
of length n
consecutive if one of the following holds:
arr[i] - arr[i - 1] == 1
for all1 <= i < n
.arr[i] - arr[i - 1] == -1
for all1 <= i < n
.
The value of an array is the sum of its elements.
For example, [3, 4, 5]
is a consecutive array of value 12 and [9, 8]
is another of value 17. While [3, 4, 3]
and [8, 6]
are not consecutive.
Given an array of integers nums
, return the sum of the values of all consecutive subarrays.
Since the answer may be very large, return it modulo 109 + 7.
Note that an array of length 1 is also considered consecutive.
Example 1:
Input: nums = [1,2,3]
Output: 20
Explanation:
The consecutive subarrays are: [1]
, [2]
, [3]
, [1, 2]
, [2, 3]
, [1, 2, 3]
.
Sum of their values would be: 1 + 2 + 3 + 3 + 5 + 6 = 20
.
Example 2:
Input: nums = [1,3,5,7]
Output: 16
Explanation:
The consecutive subarrays are: [1]
, [3]
, [5]
, [7]
.
Sum of their values would be: 1 + 3 + 5 + 7 = 16
.
Example 3:
Input: nums = [7,6,1,2]
Output: 32
Explanation:
The consecutive subarrays are: [7]
, [6]
, [1]
, [2]
, [7, 6]
, [1, 2]
.
Sum of their values would be: 7 + 6 + 1 + 2 + 13 + 3 = 32
.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 105
Solutions
Solution 1: Recurrence
We define two variables $f$ and $g$, representing the length of the increasing subarray ending at the current element and the length of the decreasing subarray ending at the current element, respectively. We use two other variables $s$ and $t$ to represent the sum of the increasing subarray ending at the current element and the sum of the decreasing subarray ending at the current element, respectively. Initially, $f = g = 1$, and $s = t = \textit{nums}[0]$.
Next, we traverse the array starting from the second element. For the current element $\textit{nums}[i]$, we consider the increasing subarray and the decreasing subarray ending at $\textit{nums}[i]$.
If $\textit{nums}[i] - \textit{nums}[i - 1] = 1$, then $\textit{nums}[i]$ can be added to the increasing subarray ending at $\textit{nums}[i - 1]$. In this case, we update $f$ and $s$, and add $s$ to the answer.
If $\textit{nums}[i] - \textit{nums}[i - 1] = -1$, then $\textit{nums}[i]$ can be added to the decreasing subarray ending at $\textit{nums}[i - 1]$. In this case, we update $g$ and $t$, and add $t$ to the answer.
Otherwise, $\textit{nums}[i]$ cannot be added to the increasing or decreasing subarray ending at $\textit{nums}[i - 1]$. We add $\textit{nums}[i]$ to the answer.
After the traversal, return the answer.
The time complexity is $O(n)$, where $n$ is the length of the array. The space complexity is $O(1)$.
-
class Solution { public int getSum(int[] nums) { final int mod = (int) 1e9 + 7; long s = nums[0], t = nums[0], ans = nums[0]; int f = 1, g = 1; for (int i = 1; i < nums.length; ++i) { int x = nums[i - 1], y = nums[i]; if (y - x == 1) { ++f; s += 1L * f * y; ans = (ans + s) % mod; } else { f = 1; s = y; } if (y - x == -1) { ++g; t += 1L * g * y; ans = (ans + t) % mod; } else { g = 1; t = y; } if (Math.abs(y - x) != 1) { ans = (ans + y) % mod; } } return (int) ans; } }
-
class Solution { public: int getSum(vector<int>& nums) { const int mod = 1e9 + 7; long long s = nums[0], t = nums[0], ans = nums[0]; int f = 1, g = 1; for (int i = 1; i < nums.size(); ++i) { int x = nums[i - 1], y = nums[i]; if (y - x == 1) { ++f; s += 1LL * f * y; ans = (ans + s) % mod; } else { f = 1; s = y; } if (y - x == -1) { ++g; t += 1LL * g * y; ans = (ans + t) % mod; } else { g = 1; t = y; } if (abs(y - x) != 1) { ans = (ans + y) % mod; } } return ans; } };
-
class Solution: def getSum(self, nums: List[int]) -> int: mod = 10**9 + 7 f = g = 1 s = t = nums[0] ans = nums[0] for x, y in pairwise(nums): if y - x == 1: f += 1 s += f * y ans = (ans + s) % mod else: f = 1 s = y if y - x == -1: g += 1 t += g * y ans = (ans + t) % mod else: g = 1 t = y if abs(y - x) != 1: ans = (ans + y) % mod return ans
-
func getSum(nums []int) int { const mod int = 1e9 + 7 f, g := 1, 1 s, t := nums[0], nums[0] ans := nums[0] for i := 1; i < len(nums); i++ { x, y := nums[i-1], nums[i] if y-x == 1 { f++ s += f * y ans = (ans + s) % mod } else { f = 1 s = y } if y-x == -1 { g++ t += g * y ans = (ans + t) % mod } else { g = 1 t = y } if abs(y-x) != 1 { ans = (ans + y) % mod } } return ans } func abs(x int) int { if x < 0 { return -x } return x }
-
function getSum(nums: number[]): number { const mod = 10 ** 9 + 7; let f = 1, g = 1; let s = nums[0], t = nums[0]; let ans = nums[0]; for (let i = 1; i < nums.length; i++) { const x = nums[i - 1]; const y = nums[i]; if (y - x === 1) { f++; s += f * y; ans = (ans + s) % mod; } else { f = 1; s = y; } if (y - x === -1) { g++; t += g * y; ans = (ans + t) % mod; } else { g = 1; t = y; } if (Math.abs(y - x) !== 1) { ans = (ans + y) % mod; } } return ans; }