Welcome to Subscribe On Youtube
3270. Find the Key of the Numbers
Description
You are given three positive integers num1
, num2
, and num3
.
The key
of num1
, num2
, and num3
is defined as a four-digit number such that:
- Initially, if any number has less than four digits, it is padded with leading zeros.
- The
ith
digit (1 <= i <= 4
) of thekey
is generated by taking the smallest digit among theith
digits ofnum1
,num2
, andnum3
.
Return the key
of the three numbers without leading zeros (if any).
Example 1:
Input: num1 = 1, num2 = 10, num3 = 1000
Output: 0
Explanation:
On padding, num1
becomes "0001"
, num2
becomes "0010"
, and num3
remains "1000"
.
- The
1st
digit of thekey
ismin(0, 0, 1)
. - The
2nd
digit of thekey
ismin(0, 0, 0)
. - The
3rd
digit of thekey
ismin(0, 1, 0)
. - The
4th
digit of thekey
ismin(1, 0, 0)
.
Hence, the key
is "0000"
, i.e. 0.
Example 2:
Input: num1 = 987, num2 = 879, num3 = 798
Output: 777
Example 3:
Input: num1 = 1, num2 = 2, num3 = 3
Output: 1
Constraints:
1 <= num1, num2, num3 <= 9999
Solutions
Solution 1: Simulation
We can directly simulate this process by defining a variable $\textit{ans}$ to store the answer and a variable $\textit{k}$ to represent the current digit place, where $\textit{k} = 1$ represents the units place, $\textit{k} = 10$ represents the tens place, and so on.
Starting from the units place, for each digit place, we calculate the current digit of $\textit{num1}$, $\textit{num2}$, and $\textit{num3}$, take the minimum of the three, and then add this minimum value multiplied by $\textit{k}$ to the answer. Then, multiply $\textit{k}$ by 10 and continue to the next digit place.
Finally, return the answer.
The time complexity is $O(1)$, and the space complexity is $O(1)$.
-
class Solution { public int generateKey(int num1, int num2, int num3) { int ans = 0, k = 1; for (int i = 0; i < 4; ++i) { int x = Math.min(Math.min(num1 / k % 10, num2 / k % 10), num3 / k % 10); ans += x * k; k *= 10; } return ans; } }
-
class Solution { public: int generateKey(int num1, int num2, int num3) { int ans = 0, k = 1; for (int i = 0; i < 4; ++i) { int x = min({num1 / k % 10, num2 / k % 10, num3 / k % 10}); ans += x * k; k *= 10; } return ans; } };
-
class Solution: def generateKey(self, num1: int, num2: int, num3: int) -> int: ans, k = 0, 1 for _ in range(4): x = min(num1 // k % 10, num2 // k % 10, num3 // k % 10) ans += x * k k *= 10 return ans
-
func generateKey(num1 int, num2 int, num3 int) (ans int) { k := 1 for i := 0; i < 4; i++ { x := min(min(num1/k%10, num2/k%10), num3/k%10) ans += x * k k *= 10 } return }
-
function generateKey(num1: number, num2: number, num3: number): number { let [ans, k] = [0, 1]; for (let i = 0; i < 4; ++i) { const x = Math.min(((num1 / k) | 0) % 10, ((num2 / k) | 0) % 10, ((num3 / k) | 0) % 10); ans += x * k; k *= 10; } return ans; }