Welcome to Subscribe On Youtube

3249. Count the Number of Good Nodes

Description

There is an undirected tree with n nodes labeled from 0 to n - 1, and rooted at node 0. You are given a 2D integer array edges of length n - 1, where edges[i] = [ai, bi] indicates that there is an edge between nodes ai and bi in the tree.

A node is good if all the subtrees rooted at its children have the same size.

Return the number of good nodes in the given tree.

A subtree of treeName is a tree consisting of a node in treeName and all of its descendants.

 

Example 1:

Input: edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[2,6]]

Output: 7

Explanation:

All of the nodes of the given tree are good.

Example 2:

Input: edges = [[0,1],[1,2],[2,3],[3,4],[0,5],[1,6],[2,7],[3,8]]

Output: 6

Explanation:

There are 6 good nodes in the given tree. They are colored in the image above.

Example 3:

Input: edges = [[0,1],[1,2],[1,3],[1,4],[0,5],[5,6],[6,7],[7,8],[0,9],[9,10],[9,12],[10,11]]

Output: 12

Explanation:

All nodes except node 9 are good.

 

Constraints:

  • 2 <= n <= 105
  • edges.length == n - 1
  • edges[i].length == 2
  • 0 <= ai, bi < n
  • The input is generated such that edges represents a valid tree.

Solutions

Solution 1: DFS

First, we construct the adjacency list $\textit{g}$ of the tree based on the given edges $\textit{edges}$, where $\textit{g}[a]$ represents all the neighboring nodes of node $a$.

Next, we design a function $\textit{dfs}(a, \textit{fa})$ to calculate the number of nodes in the subtree rooted at node $a$ and to accumulate the count of good nodes. Here, $\textit{fa}$ represents the parent node of node $a$.

The execution process of the function $\textit{dfs}(a, \textit{fa})$ is as follows:

  1. Initialize variables $\textit{pre} = -1$, $\textit{cnt} = 1$, $\textit{ok} = 1$, representing the number of nodes in a subtree of node $a$, the total number of nodes in all subtrees of node $a$, and whether node $a$ is a good node, respectively.
  2. Traverse all neighboring nodes $b$ of node $a$. If $b$ is not equal to $\textit{fa}$, recursively call $\textit{dfs}(b, a)$, with the return value being $\textit{cur}$, and add $\textit{cur}$ to $\textit{cnt}$. If $\textit{pre} < 0$, assign $\textit{cur}$ to $\textit{pre}$; otherwise, if $\textit{pre}$ is not equal to $\textit{cur}$, it means the number of nodes in different subtrees of node $a$ is different, and set $\textit{ok}$ to $0$.
  3. Finally, add $\textit{ok}$ to the answer and return $\textit{cnt}$.

In the main function, we call $\textit{dfs}(0, -1)$ and return the final answer.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ represents the number of nodes.

  • class Solution {
        private int ans;
        private List<Integer>[] g;
    
        public int countGoodNodes(int[][] edges) {
            int n = edges.length + 1;
            g = new List[n];
            Arrays.setAll(g, k -> new ArrayList<>());
            for (var e : edges) {
                int a = e[0], b = e[1];
                g[a].add(b);
                g[b].add(a);
            }
            dfs(0, -1);
            return ans;
        }
    
        private int dfs(int a, int fa) {
            int pre = -1, cnt = 1, ok = 1;
            for (int b : g[a]) {
                if (b != fa) {
                    int cur = dfs(b, a);
                    cnt += cur;
                    if (pre < 0) {
                        pre = cur;
                    } else if (pre != cur) {
                        ok = 0;
                    }
                }
            }
            ans += ok;
            return cnt;
        }
    }
    
    
  • class Solution {
    public:
        int countGoodNodes(vector<vector<int>>& edges) {
            int n = edges.size() + 1;
            vector<int> g[n];
            for (const auto& e : edges) {
                int a = e[0], b = e[1];
                g[a].push_back(b);
                g[b].push_back(a);
            }
            int ans = 0;
            auto dfs = [&](auto&& dfs, int a, int fa) -> int {
                int pre = -1, cnt = 1, ok = 1;
                for (int b : g[a]) {
                    if (b != fa) {
                        int cur = dfs(dfs, b, a);
                        cnt += cur;
                        if (pre < 0) {
                            pre = cur;
                        } else if (pre != cur) {
                            ok = 0;
                        }
                    }
                }
                ans += ok;
                return cnt;
            };
            dfs(dfs, 0, -1);
            return ans;
        }
    };
    
    
  • class Solution:
        def countGoodNodes(self, edges: List[List[int]]) -> int:
            def dfs(a: int, fa: int) -> int:
                pre = -1
                cnt = ok = 1
                for b in g[a]:
                    if b != fa:
                        cur = dfs(b, a)
                        cnt += cur
                        if pre < 0:
                            pre = cur
                        elif pre != cur:
                            ok = 0
                nonlocal ans
                ans += ok
                return cnt
    
            g = defaultdict(list)
            for a, b in edges:
                g[a].append(b)
                g[b].append(a)
            ans = 0
            dfs(0, -1)
            return ans
    
    
  • func countGoodNodes(edges [][]int) (ans int) {
    	n := len(edges) + 1
    	g := make([][]int, n)
    	for _, e := range edges {
    		a, b := e[0], e[1]
    		g[a] = append(g[a], b)
    		g[b] = append(g[b], a)
    	}
    	var dfs func(int, int) int
    	dfs = func(a, fa int) int {
    		pre, cnt, ok := -1, 1, 1
    		for _, b := range g[a] {
    			if b != fa {
    				cur := dfs(b, a)
    				cnt += cur
    				if pre < 0 {
    					pre = cur
    				} else if pre != cur {
    					ok = 0
    				}
    			}
    		}
    		ans += ok
    		return cnt
    	}
    	dfs(0, -1)
    	return
    }
    
    
  • function countGoodNodes(edges: number[][]): number {
        const n = edges.length + 1;
        const g: number[][] = Array.from({ length: n }, () => []);
        for (const [a, b] of edges) {
            g[a].push(b);
            g[b].push(a);
        }
        let ans = 0;
        const dfs = (a: number, fa: number): number => {
            let [pre, cnt, ok] = [-1, 1, 1];
            for (const b of g[a]) {
                if (b !== fa) {
                    const cur = dfs(b, a);
                    cnt += cur;
                    if (pre < 0) {
                        pre = cur;
                    } else if (pre !== cur) {
                        ok = 0;
                    }
                }
            }
            ans += ok;
            return cnt;
        };
        dfs(0, -1);
        return ans;
    }
    
    

All Problems

All Solutions