##### Welcome to Subscribe On Youtube

# 3240. Minimum Number of Flips to Make Binary Grid Palindromic II

## Description

You are given an `m x n`

binary matrix `grid`

.

A row or column is considered **palindromic** if its values read the same forward and backward.

You can **flip** any number of cells in `grid`

from `0`

to `1`

, or from `1`

to `0`

.

Return the **minimum** number of cells that need to be flipped to make **all** rows and columns **palindromic**, and the total number of `1`

's in `grid`

**divisible** by `4`

.

**Example 1:**

**Input:** grid = [[1,0,0],[0,1,0],[0,0,1]]

**Output:** 3

**Explanation:**

**Example 2:**

**Input:** grid = [[0,1],[0,1],[0,0]]

**Output:** 2

**Explanation:**

**Example 3:**

**Input:** grid = [[1],[1]]

**Output:** 2

**Explanation:**

**Constraints:**

`m == grid.length`

`n == grid[i].length`

`1 <= m * n <= 2 * 10`

^{5}`0 <= grid[i][j] <= 1`