##### Welcome to Subscribe On Youtube

# 3235. Check if the Rectangle Corner Is Reachable

## Description

You are given two positive integers `xCorner`

and `yCorner`

, and a 2D array `circles`

, where `circles[i] = [x`

denotes a circle with center at _{i}, y_{i}, r_{i}]`(x`

and radius _{i}, y_{i})`r`

._{i}

There is a rectangle in the coordinate plane with its bottom left corner at the origin and top right corner at the coordinate `(xCorner, yCorner)`

. You need to check whether there is a path from the bottom left corner to the top right corner such that the **entire path** lies inside the rectangle, **does not** touch or lie inside **any** circle, and touches the rectangle **only** at the two corners.

Return `true`

if such a path exists, and `false`

otherwise.

**Example 1:**

**Input:** xCorner = 3, yCorner = 4, circles = [[2,1,1]]

**Output:** true

**Explanation:**

The black curve shows a possible path between `(0, 0)`

and `(3, 4)`

.

**Example 2:**

**Input:** xCorner = 3, yCorner = 3, circles = [[1,1,2]]

**Output:** false

**Explanation:**

No path exists from `(0, 0)`

to `(3, 3)`

.

**Example 3:**

**Input:** xCorner = 3, yCorner = 3, circles = [[2,1,1],[1,2,1]]

**Output:** false

**Explanation:**

No path exists from `(0, 0)`

to `(3, 3)`

.

**Example 4:**

**Input:** xCorner = 4, yCorner = 4, circles = [[5,5,1]]

**Output:** true

**Explanation:**

**Constraints:**

`3 <= xCorner, yCorner <= 10`

^{9}`1 <= circles.length <= 1000`

`circles[i].length == 3`

`1 <= x`

_{i}, y_{i}, r_{i}<= 10^{9}