Welcome to Subscribe On Youtube
3226. Number of Bit Changes to Make Two Integers Equal
Description
You are given two positive integers n and k.
You can choose any bit in the binary representation of n that is equal to 1 and change it to 0.
Return the number of changes needed to make n equal to k. If it is impossible, return -1.
Example 1:
Input: n = 13, k = 4
Output: 2
Explanation:
Initially, the binary representations of n and k are n = (1101)2 and k = (0100)2.
We can change the first and fourth bits of n. The resulting integer is n = (0100)2 = k.
Example 2:
Input: n = 21, k = 21
Output: 0
Explanation:
n and k are already equal, so no changes are needed.
Example 3:
Input: n = 14, k = 13
Output: -1
Explanation:
It is not possible to make n equal to k.
Constraints:
1 <= n, k <= 106
Solutions
Solution 1: Bit Manipulation
If the bitwise AND result of $n$ and $k$ is not equal to $k$, it indicates that there exists at least one bit where $k$ is $1$ and the corresponding bit in $n$ is $0$. In this case, it is impossible to modify a bit in $n$ to make $n$ equal to $k$, and we return $-1$. Otherwise, we count the number of $1$s in the binary representation of $n \oplus k$.
The time complexity is $O(\log n)$, and the space complexity is $O(1)$.
-
class Solution { public int minChanges(int n, int k) { return (n & k) != k ? -1 : Integer.bitCount(n ^ k); } } -
class Solution { public: int minChanges(int n, int k) { return (n & k) != k ? -1 : __builtin_popcount(n ^ k); } }; -
class Solution: def minChanges(self, n: int, k: int) -> int: return -1 if n & k != k else (n ^ k).bit_count() -
func minChanges(n int, k int) int { if n&k != k { return -1 } return bits.OnesCount(uint(n ^ k)) } -
function minChanges(n: number, k: number): number { return (n & k) !== k ? -1 : bitCount(n ^ k); } function bitCount(i: number): number { i = i - ((i >>> 1) & 0x55555555); i = (i & 0x33333333) + ((i >>> 2) & 0x33333333); i = (i + (i >>> 4)) & 0x0f0f0f0f; i = i + (i >>> 8); i = i + (i >>> 16); return i & 0x3f; } -
public class Solution { public int MinChanges(int n, int k) { return (n & k) != k ? -1 : BitOperations.PopCount((uint)(n ^ k)); } } -
impl Solution { pub fn min_changes(n: i32, k: i32) -> i32 { if (n & k) != k { -1 } else { (n ^ k).count_ones() as i32 } } }