Welcome to Subscribe On Youtube
3221. Maximum Array Hopping Score II 🔒
Description
Given an array nums
, you have to get the maximum score starting from index 0 and hopping until you reach the last element of the array.
In each hop, you can jump from index i
to an index j > i
, and you get a score of (j - i) * nums[j]
.
Return the maximum score you can get.
Example 1:
Input: nums = [1,5,8]
Output: 16
Explanation:
There are two possible ways to reach the last element:
0 -> 1 -> 2
with a score of(1 - 0) * 5 + (2 - 1) * 8 = 13
.0 -> 2
with a score of(2 - 0) * 8 = 16
.
Example 2:
Input: nums = [4,5,2,8,9,1,3]
Output: 42
Explanation:
We can do the hopping 0 -> 4 -> 6
with a score of (4 - 0) * 9 + (6 - 4) * 3 = 42
.
Constraints:
2 <= nums.length <= 105
1 <= nums[i] <= 105
Solutions
Solution 1: Monotonic Stack
We observe that for the current position $i$, we should jump to the next position $j$ with the maximum value to obtain the maximum score.
Therefore, we traverse the array $\textit{nums}$, maintaining a stack $\textit{stk}$ that is monotonically decreasing from the bottom to the top of the stack. For the current position $i$ being traversed, if the value corresponding to the top element of the stack is less than or equal to $\textit{nums}[i]$, we continuously pop the top element of the stack until the stack is empty or the value corresponding to the top element of the stack is greater than $\textit{nums}[i]$, and then push $i$ into the stack.
Next, we initialize the answer $\textit{ans}$ and the current position $i = 0$, traverse the elements in the stack, each time taking out the top element $j$, updating the answer $\textit{ans} += \textit{nums}[j] \times (j - i)$, and then updating $i = j$.
-
class Solution { public long maxScore(int[] nums) { Deque<Integer> stk = new ArrayDeque<>(); for (int i = 0; i < nums.length; ++i) { while (!stk.isEmpty() && nums[stk.peek()] <= nums[i]) { stk.pop(); } stk.push(i); } long ans = 0, i = 0; while (!stk.isEmpty()) { int j = stk.pollLast(); ans += (j - i) * nums[j]; i = j; } return ans; } }
-
class Solution { public: long long maxScore(vector<int>& nums) { vector<int> stk; for (int i = 0; i < nums.size(); ++i) { while (stk.size() && nums[stk.back()] <= nums[i]) { stk.pop_back(); } stk.push_back(i); } long long ans = 0, i = 0; for (int j : stk) { ans += (j - i) * nums[j]; i = j; } return ans; } };
-
class Solution: def maxScore(self, nums: List[int]) -> int: stk = [] for i, x in enumerate(nums): while stk and nums[stk[-1]] <= x: stk.pop() stk.append(i) ans = i = 0 for j in stk: ans += nums[j] * (j - i) i = j return ans
-
func maxScore(nums []int) (ans int64) { stk := []int{} for i, x := range nums { for len(stk) > 0 && nums[stk[len(stk)-1]] <= x { stk = stk[:len(stk)-1] } stk = append(stk, i) } i := 0 for _, j := range stk { ans += int64((j - i) * nums[j]) i = j } return }
-
function maxScore(nums: number[]): number { const stk: number[] = []; for (let i = 0; i < nums.length; ++i) { while (stk.length && nums[stk.at(-1)!] <= nums[i]) { stk.pop(); } stk.push(i); } let ans = 0; let i = 0; for (const j of stk) { ans += (j - i) * nums[j]; i = j; } return ans; }