Welcome to Subscribe On Youtube
3191. Minimum Operations to Make Binary Array Elements Equal to One I
Description
You are given a binary array nums
.
You can do the following operation on the array any number of times (possibly zero):
- Choose any 3 consecutive elements from the array and flip all of them.
Flipping an element means changing its value from 0 to 1, and from 1 to 0.
Return the minimum number of operations required to make all elements in nums
equal to 1. If it is impossible, return -1.
Example 1:
Input: nums = [0,1,1,1,0,0]
Output: 3
Explanation:
We can do the following operations:
- Choose the elements at indices 0, 1 and 2. The resulting array is
nums = [1,0,0,1,0,0]
. - Choose the elements at indices 1, 2 and 3. The resulting array is
nums = [1,1,1,0,0,0]
. - Choose the elements at indices 3, 4 and 5. The resulting array is
nums = [1,1,1,1,1,1]
.
Example 2:
Input: nums = [0,1,1,1]
Output: -1
Explanation:
It is impossible to make all elements equal to 1.
Constraints:
3 <= nums.length <= 105
0 <= nums[i] <= 1
Solutions
Solution 1: Sequential Traversal + Simulation
We notice that the first position in the array that is $0$ must undergo a flip operation, otherwise, it cannot be turned into $1$. Therefore, we can sequentially traverse the array, and each time we encounter $0$, we flip the next two elements and accumulate one operation count.
After the traversal, we return the answer.
The time complexity is $O(n)$, where $n$ is the length of the array $\text{nums}$. The space complexity is $O(1)$.
-
class Solution { public int minOperations(int[] nums) { int ans = 0; int n = nums.length; for (int i = 0; i < n; ++i) { if (nums[i] == 0) { if (i + 2 >= n) { return -1; } nums[i + 1] ^= 1; nums[i + 2] ^= 1; ++ans; } } return ans; } }
-
class Solution { public: int minOperations(vector<int>& nums) { int ans = 0; int n = nums.size(); for (int i = 0; i < n; ++i) { if (nums[i] == 0) { if (i + 2 >= n) { return -1; } nums[i + 1] ^= 1; nums[i + 2] ^= 1; ++ans; } } return ans; } };
-
class Solution: def minOperations(self, nums: List[int]) -> int: ans = 0 for i, x in enumerate(nums): if x == 0: if i + 2 >= len(nums): return -1 nums[i + 1] ^= 1 nums[i + 2] ^= 1 ans += 1 return ans
-
func minOperations(nums []int) (ans int) { for i, x := range nums { if x == 0 { if i+2 >= len(nums) { return -1 } nums[i+1] ^= 1 nums[i+2] ^= 1 ans++ } } return }
-
function minOperations(nums: number[]): number { const n = nums.length; let ans = 0; for (let i = 0; i < n; ++i) { if (nums[i] === 0) { if (i + 2 >= n) { return -1; } nums[i + 1] ^= 1; nums[i + 2] ^= 1; ++ans; } } return ans; }