Welcome to Subscribe On Youtube
3184. Count Pairs That Form a Complete Day I
Description
Given an integer array hours
representing times in hours, return an integer denoting the number of pairs i
, j
where i < j
and hours[i] + hours[j]
forms a complete day.
A complete day is defined as a time duration that is an exact multiple of 24 hours.
For example, 1 day is 24 hours, 2 days is 48 hours, 3 days is 72 hours, and so on.
Example 1:
Input: hours = [12,12,30,24,24]
Output: 2
Explanation:
The pairs of indices that form a complete day are (0, 1)
and (3, 4)
.
Example 2:
Input: hours = [72,48,24,3]
Output: 3
Explanation:
The pairs of indices that form a complete day are (0, 1)
, (0, 2)
, and (1, 2)
.
Constraints:
1 <= hours.length <= 100
1 <= hours[i] <= 109
Solutions
Solution 1: Counting
We can use a hash table or an array $\text{cnt}$ of length $24$ to record the occurrence count of each hour modulo $24$.
Iterate through the array $\text{hours}$. For each hour $x$, we can find the number that, when added to $x$, results in a multiple of $24$, and after modulo $24$, this number is $(24 - x \bmod 24) \bmod 24$. We then accumulate the occurrence count of this number from the hash table or array. After that, we increment the occurrence count of $x$ modulo $24$ by one.
After iterating through the array $\text{hours}$, we can obtain the number of index pairs that meet the problem requirements.
The time complexity is $O(n)$, where $n$ is the length of the array $\text{hours}$. The space complexity is $O(C)$, where $C=24$.
-
class Solution { public int countCompleteDayPairs(int[] hours) { int[] cnt = new int[24]; int ans = 0; for (int x : hours) { ans += cnt[(24 - x % 24) % 24]; ++cnt[x % 24]; } return ans; } }
-
class Solution { public: int countCompleteDayPairs(vector<int>& hours) { int cnt[24]{}; int ans = 0; for (int x : hours) { ans += cnt[(24 - x % 24) % 24]; ++cnt[x % 24]; } return ans; } };
-
class Solution: def countCompleteDayPairs(self, hours: List[int]) -> int: cnt = Counter() ans = 0 for x in hours: ans += cnt[(24 - (x % 24)) % 24] cnt[x % 24] += 1 return ans
-
func countCompleteDayPairs(hours []int) (ans int) { cnt := [24]int{} for _, x := range hours { ans += cnt[(24-x%24)%24] cnt[x%24]++ } return }
-
function countCompleteDayPairs(hours: number[]): number { const cnt: number[] = Array(24).fill(0); let ans: number = 0; for (const x of hours) { ans += cnt[(24 - (x % 24)) % 24]; ++cnt[x % 24]; } return ans; }