Welcome to Subscribe On Youtube
3183. The Number of Ways to Make the Sum 🔒
Description
You have an infinite number of coins with values 1, 2, and 6, and only 2 coins with value 4.
Given an integer n
, return the number of ways to make the sum of n
with the coins you have.
Since the answer may be very large, return it modulo 109 + 7
.
Note that the order of the coins doesn't matter and [2, 2, 3]
is the same as [2, 3, 2]
.
Example 1:
Input: n = 4
Output: 4
Explanation:
Here are the four combinations: [1, 1, 1, 1]
, [1, 1, 2]
, [2, 2]
, [4]
.
Example 2:
Input: n = 12
Output: 22
Explanation:
Note that [4, 4, 4]
is not a valid combination since we cannot use 4 three times.
Example 3:
Input: n = 5
Output: 4
Explanation:
Here are the four combinations: [1, 1, 1, 1, 1]
, [1, 1, 1, 2]
, [1, 2, 2]
, [1, 4]
.
Constraints:
1 <= n <= 105
Solutions
Solution 1: Dynamic Programming (Complete Knapsack)
We can start by ignoring coin $4$, defining the coin array coins = [1, 2, 6]
, and then using the idea of the complete knapsack problem. We define $f[j]$ as the number of ways to make up amount $j$ using the first $i$ types of coins, initially $f[0] = 1$. Then, we iterate through the coin array coins
, and for each coin $x$, we iterate through amounts from $x$ to $n$, updating $f[j] = f[j] + f[j - x]$.
Finally, $f[n]$ is the number of ways to make up amount $n$ using coins $1, 2, 6$. Then, if $n \geq 4$, we consider choosing one coin $4$, so the number of ways becomes $f[n] + f[n - 4]$, and if $n \geq 8$, we consider choosing two coins $4$, so the number of ways becomes $f[n] + f[n - 4] + f[n - 8]$.
Note the modulus operation for the answer.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Where $n$ is the amount.
-
class Solution { public int numberOfWays(int n) { final int mod = (int) 1e9 + 7; int[] coins = {1, 2, 6}; int[] f = new int[n + 1]; f[0] = 1; for (int x : coins) { for (int j = x; j <= n; ++j) { f[j] = (f[j] + f[j - x]) % mod; } } int ans = f[n]; if (n >= 4) { ans = (ans + f[n - 4]) % mod; } if (n >= 8) { ans = (ans + f[n - 8]) % mod; } return ans; } }
-
class Solution { public: int numberOfWays(int n) { const int mod = 1e9 + 7; int coins[3] = {1, 2, 6}; int f[n + 1]; memset(f, 0, sizeof(f)); f[0] = 1; for (int x : coins) { for (int j = x; j <= n; ++j) { f[j] = (f[j] + f[j - x]) % mod; } } int ans = f[n]; if (n >= 4) { ans = (ans + f[n - 4]) % mod; } if (n >= 8) { ans = (ans + f[n - 8]) % mod; } return ans; } };
-
class Solution: def numberOfWays(self, n: int) -> int: mod = 10**9 + 7 coins = [1, 2, 6] f = [0] * (n + 1) f[0] = 1 for x in coins: for j in range(x, n + 1): f[j] = (f[j] + f[j - x]) % mod ans = f[n] if n >= 4: ans = (ans + f[n - 4]) % mod if n >= 8: ans = (ans + f[n - 8]) % mod return ans
-
func numberOfWays(n int) int { const mod int = 1e9 + 7 coins := []int{1, 2, 6} f := make([]int, n+1) f[0] = 1 for _, x := range coins { for j := x; j <= n; j++ { f[j] = (f[j] + f[j-x]) % mod } } ans := f[n] if n >= 4 { ans = (ans + f[n-4]) % mod } if n >= 8 { ans = (ans + f[n-8]) % mod } return ans }
-
function numberOfWays(n: number): number { const mod = 10 ** 9 + 7; const f: number[] = Array(n + 1).fill(0); f[0] = 1; for (const x of [1, 2, 6]) { for (let j = x; j <= n; ++j) { f[j] = (f[j] + f[j - x]) % mod; } } let ans = f[n]; if (n >= 4) { ans = (ans + f[n - 4]) % mod; } if (n >= 8) { ans = (ans + f[n - 8]) % mod; } return ans; }