Welcome to Subscribe On Youtube

3180. Maximum Total Reward Using Operations I

Description

You are given an integer array rewardValues of length n, representing the values of rewards.

Initially, your total reward x is 0, and all indices are unmarked. You are allowed to perform the following operation any number of times:

  • Choose an unmarked index i from the range [0, n - 1].
  • If rewardValues[i] is greater than your current total reward x, then add rewardValues[i] to x (i.e., x = x + rewardValues[i]), and mark the index i.

Return an integer denoting the maximum total reward you can collect by performing the operations optimally.

 

Example 1:

Input: rewardValues = [1,1,3,3]

Output: 4

Explanation:

During the operations, we can choose to mark the indices 0 and 2 in order, and the total reward will be 4, which is the maximum.

Example 2:

Input: rewardValues = [1,6,4,3,2]

Output: 11

Explanation:

Mark the indices 0, 2, and 1 in order. The total reward will then be 11, which is the maximum.

 

Constraints:

  • 1 <= rewardValues.length <= 2000
  • 1 <= rewardValues[i] <= 2000

Solutions

We can sort the rewardValues array and then use memoization to solve for the maximum total reward.

We define a function $\text{dfs}(x)$, representing the maximum total reward that can be obtained when the current total reward is $x$. Thus, the answer is $\text{dfs}(0)$.

The execution process of the function $\text{dfs}(x)$ is as follows:

  1. Perform a binary search in the rewardValues array for the index $i$ of the first element greater than $x$;
  2. Iterate over the elements in the rewardValues array starting from index $i$, and for each element $v$, calculate the maximum value of $v + \text{dfs}(x + v)$.
  3. Return the result.

To avoid repeated calculations, we use a memoization array f to record the results that have already been computed.

The time complexity is $O(n \times (\log n + M))$, and the space complexity is $O(M)$. Where $n$ is the length of the rewardValues array, and $M$ is twice the maximum value in the rewardValues array.

  • class Solution {
        private int[] nums;
        private Integer[] f;
    
        public int maxTotalReward(int[] rewardValues) {
            nums = rewardValues;
            Arrays.sort(nums);
            int n = nums.length;
            f = new Integer[nums[n - 1] << 1];
            return dfs(0);
        }
    
        private int dfs(int x) {
            if (f[x] != null) {
                return f[x];
            }
            int i = Arrays.binarySearch(nums, x + 1);
            i = i < 0 ? -i - 1 : i;
            int ans = 0;
            for (; i < nums.length; ++i) {
                ans = Math.max(ans, nums[i] + dfs(x + nums[i]));
            }
            return f[x] = ans;
        }
    }
    
  • class Solution {
    public:
        int maxTotalReward(vector<int>& rewardValues) {
            sort(rewardValues.begin(), rewardValues.end());
            int n = rewardValues.size();
            int f[rewardValues.back() << 1];
            memset(f, -1, sizeof(f));
            function<int(int)> dfs = [&](int x) {
                if (f[x] != -1) {
                    return f[x];
                }
                auto it = upper_bound(rewardValues.begin(), rewardValues.end(), x);
                int ans = 0;
                for (; it != rewardValues.end(); ++it) {
                    ans = max(ans, rewardValues[it - rewardValues.begin()] + dfs(x + *it));
                }
                return f[x] = ans;
            };
            return dfs(0);
        }
    };
    
  • class Solution:
        def maxTotalReward(self, rewardValues: List[int]) -> int:
            @cache
            def dfs(x: int) -> int:
                i = bisect_right(rewardValues, x)
                ans = 0
                for v in rewardValues[i:]:
                    ans = max(ans, v + dfs(x + v))
                return ans
    
            rewardValues.sort()
            return dfs(0)
    
    
  • func maxTotalReward(rewardValues []int) int {
    	sort.Ints(rewardValues)
    	n := len(rewardValues)
    	f := make([]int, rewardValues[n-1]<<1)
    	for i := range f {
    		f[i] = -1
    	}
    	var dfs func(int) int
    	dfs = func(x int) int {
    		if f[x] != -1 {
    			return f[x]
    		}
    		i := sort.SearchInts(rewardValues, x+1)
    		f[x] = 0
    		for _, v := range rewardValues[i:] {
    			f[x] = max(f[x], v+dfs(x+v))
    		}
    		return f[x]
    	}
    	return dfs(0)
    }
    
  • function maxTotalReward(rewardValues: number[]): number {
        rewardValues.sort((a, b) => a - b);
        const search = (x: number): number => {
            let [l, r] = [0, rewardValues.length];
            while (l < r) {
                const mid = (l + r) >> 1;
                if (rewardValues[mid] > x) {
                    r = mid;
                } else {
                    l = mid + 1;
                }
            }
            return l;
        };
        const f: number[] = Array(rewardValues.at(-1)! << 1).fill(-1);
        const dfs = (x: number): number => {
            if (f[x] !== -1) {
                return f[x];
            }
            let ans = 0;
            for (let i = search(x); i < rewardValues.length; ++i) {
                ans = Math.max(ans, rewardValues[i] + dfs(x + rewardValues[i]));
            }
            return (f[x] = ans);
        };
        return dfs(0);
    }
    
    

All Problems

All Solutions