Welcome to Subscribe On Youtube
3180. Maximum Total Reward Using Operations I
Description
You are given an integer array rewardValues
of length n
, representing the values of rewards.
Initially, your total reward x
is 0, and all indices are unmarked. You are allowed to perform the following operation any number of times:
- Choose an unmarked index
i
from the range[0, n - 1]
. - If
rewardValues[i]
is greater than your current total rewardx
, then addrewardValues[i]
tox
(i.e.,x = x + rewardValues[i]
), and mark the indexi
.
Return an integer denoting the maximum total reward you can collect by performing the operations optimally.
Example 1:
Input: rewardValues = [1,1,3,3]
Output: 4
Explanation:
During the operations, we can choose to mark the indices 0 and 2 in order, and the total reward will be 4, which is the maximum.
Example 2:
Input: rewardValues = [1,6,4,3,2]
Output: 11
Explanation:
Mark the indices 0, 2, and 1 in order. The total reward will then be 11, which is the maximum.
Constraints:
1 <= rewardValues.length <= 2000
1 <= rewardValues[i] <= 2000
Solutions
Solution 1: Sorting + Memoization + Binary Search
We can sort the rewardValues
array and then use memoization to solve for the maximum total reward.
We define a function $\text{dfs}(x)$, representing the maximum total reward that can be obtained when the current total reward is $x$. Thus, the answer is $\text{dfs}(0)$.
The execution process of the function $\text{dfs}(x)$ is as follows:
- Perform a binary search in the
rewardValues
array for the index $i$ of the first element greater than $x$; - Iterate over the elements in the
rewardValues
array starting from index $i$, and for each element $v$, calculate the maximum value of $v + \text{dfs}(x + v)$. - Return the result.
To avoid repeated calculations, we use a memoization array f
to record the results that have already been computed.
The time complexity is $O(n \times (\log n + M))$, and the space complexity is $O(M)$. Where $n$ is the length of the rewardValues
array, and $M$ is twice the maximum value in the rewardValues
array.
-
class Solution { private int[] nums; private Integer[] f; public int maxTotalReward(int[] rewardValues) { nums = rewardValues; Arrays.sort(nums); int n = nums.length; f = new Integer[nums[n - 1] << 1]; return dfs(0); } private int dfs(int x) { if (f[x] != null) { return f[x]; } int i = Arrays.binarySearch(nums, x + 1); i = i < 0 ? -i - 1 : i; int ans = 0; for (; i < nums.length; ++i) { ans = Math.max(ans, nums[i] + dfs(x + nums[i])); } return f[x] = ans; } }
-
class Solution { public: int maxTotalReward(vector<int>& rewardValues) { sort(rewardValues.begin(), rewardValues.end()); int n = rewardValues.size(); int f[rewardValues.back() << 1]; memset(f, -1, sizeof(f)); function<int(int)> dfs = [&](int x) { if (f[x] != -1) { return f[x]; } auto it = upper_bound(rewardValues.begin(), rewardValues.end(), x); int ans = 0; for (; it != rewardValues.end(); ++it) { ans = max(ans, rewardValues[it - rewardValues.begin()] + dfs(x + *it)); } return f[x] = ans; }; return dfs(0); } };
-
class Solution: def maxTotalReward(self, rewardValues: List[int]) -> int: @cache def dfs(x: int) -> int: i = bisect_right(rewardValues, x) ans = 0 for v in rewardValues[i:]: ans = max(ans, v + dfs(x + v)) return ans rewardValues.sort() return dfs(0)
-
func maxTotalReward(rewardValues []int) int { sort.Ints(rewardValues) n := len(rewardValues) f := make([]int, rewardValues[n-1]<<1) for i := range f { f[i] = -1 } var dfs func(int) int dfs = func(x int) int { if f[x] != -1 { return f[x] } i := sort.SearchInts(rewardValues, x+1) f[x] = 0 for _, v := range rewardValues[i:] { f[x] = max(f[x], v+dfs(x+v)) } return f[x] } return dfs(0) }
-
function maxTotalReward(rewardValues: number[]): number { rewardValues.sort((a, b) => a - b); const search = (x: number): number => { let [l, r] = [0, rewardValues.length]; while (l < r) { const mid = (l + r) >> 1; if (rewardValues[mid] > x) { r = mid; } else { l = mid + 1; } } return l; }; const f: number[] = Array(rewardValues.at(-1)! << 1).fill(-1); const dfs = (x: number): number => { if (f[x] !== -1) { return f[x]; } let ans = 0; for (let i = search(x); i < rewardValues.length; ++i) { ans = Math.max(ans, rewardValues[i] + dfs(x + rewardValues[i])); } return (f[x] = ans); }; return dfs(0); }